DOI QR코드

DOI QR Code

심근허혈검출을 위한 심박변이도의 시간과 주파수 영역에서의 특징 비교

Comparison of HRV Time and Frequency Domain Features for Myocardial Ischemia Detection

  • 투고 : 2011.01.11
  • 심사 : 2011.03.15
  • 발행 : 2011.03.28

초록

심박 변이도 (HRV) 분석은 심근허혈 (MI)를 평가하기 위한 편리한 도구이다. HRV에 대한 분석법은 시간 영역과 주파수 영역 분석으로 나눠질 수 있다. 본 논문은 단기간의 HRV 분석에 있어서 웨이블릿 변환을 주파수 영역 분석과 시간 영역 분석 비교하기 위하여 사용하였다. ST-T와 정상 에피소드는 각각 European ST-T 데이터베이스와 MIT-BIH Normal Sinus Rhythm 데이터베이스에서 각각 수집되었다. 한 에피소드는 32개 연속하는 RR 간격으로 나눠질 수 있다. 18개 HRV 특징은 시간과 주파수 영역 분석을 통하여 추출된다. 가종 퍼지소속함수 신경망 (NEWFM)은 추출된 18개의 특징을 이용하여 심근허혈을 진단하였다. 결과는 보여주는 평균 정확도로부터 시간영역과 주파수영역의 특징은 각각 75.29%와 80.93%이다.

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. N. A. Agadzhanyan, T. E. Batotsyrenova, A. E. Severin, "Comparison of specific features of the heart rate variability in students living in regions with different natural and climatic conditions," HUMAN PHYSIOLOGY, Vol.33, No.6, pp.715-719, 2007. https://doi.org/10.1134/S0362119707060084
  2. M. Malik, "Heart rate variability - standards of measurement, physiological interpretation, and clinical use," Circulation, pp.1043-1065, 1996.
  3. J. Mateo and P. Laguna, "Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model," IEEE Trans. Biomed. Eng., Vol.47, No.8, pp.985-996, 2000. https://doi.org/10.1109/10.855925
  4. R. DeBoer, J. Karemaker, and J. Strackee, "Comparing spectra of a series of point events particularly for heart rate variability data," IEEE Trans. Biomed. Eng., Vol.31, No.4, pp.384-387, 1984. https://doi.org/10.1109/TBME.1984.325351
  5. A. Subasi, "Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients," Expert Systems with Applications, Vol.28, Issue 4, pp.701-711, 2005. https://doi.org/10.1016/j.eswa.2004.12.027
  6. M. W. Zimmerman and R. J. Povinelli, "On improving the classification of myocardial ischemia using holter ECG data," Computers in Cardiology, pp.377-380, 2004.
  7. A. Taddei, A. Biagini, and G. Distante, "The European ST-T database: development, distribution and use," in Proc. Computers in Cardiology, pp.177-180, 1990(9).
  8. A. Gharaviri, M. Teshnehlab, and H. A. Moghaddam, "Ischemia detection via ECG using ANFIS, " in Proc. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1163-1166, 2008(8).
  9. K.-M. Chang, Z.-Z. Lin, S.-H. Liu. and C.-C. Tyan, "Myocardial Ischemia Detection by Pulse Signal Features and Fuzzy Clustering," In Proc. International Conference on BioMedical Engineering and Informatics, Vol.2, pp.473-477, 2008(5)
  10. M. W. Zimmerman and R. J. Povinelli, "On improving the classification of myocardial ischemia using holter ECG data," in Proc. Computers in Cardiology, pp.377-380, 2004(9).
  11. J. S. Lim, "Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system," IEEE Trans. on Neural Networks, Vol.20, issue 3, pp.522-527, 2009. https://doi.org/10.1109/TNN.2008.2012031
  12. Z. X. Zhang, S. H. Lee, and J. S. Lim, "Comparison of Feature Selection Methods in ECG Signal Classification," in Proc. The 4th International Conference on Ubiquitous Information Management and Communication, pp.502-506, 2010(1).
  13. J S. Lim, D. Wang, Y.-S. Kim, and S. Gupta, "A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome," Neurocomputing, Vol.69, issues 7-9, pp.969-974, 2006. https://doi.org/10.1016/j.neucom.2005.06.009
  14. R. Mark and G. Moody, "The MIT-BIH Normal Sinus Rhythm Database Directory," Mass. Inst. of Tech. (MIT), 1988.
  15. S. Cerutti, L. Mainardi, A Bianchi, M. G. Signorini, and M. Bertinelli, "Time-variant autoregressive spectral estimation in acute ischemic episodes," in Proc. Computers in Cardiology, pp. 315-318, 1992(10).
  16. M. Malik, "Heart rate variability standards of measurement, physiological interpretation, and clinical use," Circulation, Vol.93, pp.1043-1065, 1996. https://doi.org/10.1161/01.CIR.93.5.1043
  17. B. M. Asl, S. K. Setarehdan, and M. Mohebbi, "Support Vector Machine-Based Arrhythmia Classification Using Reduced Features of Heart Rate Variability Signal," Artificial Intelligence in Medicine, Vol.44, No.1, 2008.
  18. E. R Migliaro, R. Canetti, and P. Contreras, "Short-Term Studies of Heart Rate Variability: Comparison of Two Methods for Recording," Physiological Measurement, Vol.25, No.6, pp.15-20, 2004. https://doi.org/10.1088/0967-3334/25/1/002
  19. A. Kandaswamy, C. S. Kumar, R. P. Ramanathan, S. Jayaraman, and N. Malmurugan, "Neural Classification of Lung Sounds Using Wavelet Coefficients," Computers in Biology and Medicine, Vol.34, No.6, pp.523-537, 2004. https://doi.org/10.1016/S0010-4825(03)00092-1
  20. S. H. Lee and J. S. Lim, "Forecasting KOSPI based on a neural network with weighted fuzzy membership functions," Expert Systems with Applications, Vol.38, Issue 4, pp.4259-4263, 2011. https://doi.org/10.1016/j.eswa.2010.09.093
  21. S. H Lee and J. S. Lim, "Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method, Korean Institute Intelligent Systems, Vol.19, Issue 2, pp.206-211, 2009. https://doi.org/10.5391/JKIIS.2009.19.2.206