ON m-CONVEX SETS IN PRECONVEXITY SPACES

WON KEUN MIN

Abstract. In this paper, we introduce the concepts of m-convex set, mc-convex function and mc*-convex function. We study basic properties for m-convex sets and characterization for such functions.

AMS Mathematics Subject Classification : 52A01
Key words and phrases : preconvexity, c-convex function, m-convex set, mc-convex function, mc*-convex function

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set $P(X)$ of a set X and investigated some properties. He showed that a preconvexity on a set yields a convexity space in the same manner as a proximity [3] yields a topological space. In this paper, we introduce and study the m-convex sets induced by convex sets on a preconvexity space. In fact, every m-convex set is a convex set but the collection of all m-convex sets on a preconvexity space has some special properties as studied in section 2. We also introduce the concepts of mc-convex functions and mc*-continuous functions defined by m-convex sets and convex sets. In particular, the mc-convex function is a generalization of convex function on preconvexity spaces. In section 3, we investigate characterizations for such functions and relationships among c-convex function, mc-convex function and mc*-continuous function.

Definition 1 ([1]). Let X be a nonempty set. A binary relation σ on $P(X)$ is called a preconvexity on X if the relation satisfies the following properties; we write $x \sigma A$ for $\{x\} \sigma A$:

1. If $A \subseteq B$, then $A \sigma B$.
2. If $A \sigma B$ and $B = \emptyset$, then $A = \emptyset$.
3. If $A \sigma B$ and $b \sigma C$ for all $b \in B$, then $A \sigma C$.
4. If $A \sigma B$ and $x \in A$, then $x \sigma B$.

Received September 3, 2010. Accepted October 19, 2010.
© 2011 Korean SIGCAM and KSCAM.
The pair \((X, \sigma)\) is called a preconvexity space. A convexity is a reflexive and transitive relation. In a preconvexity space \((X, \sigma)\), \(G(A) = \{x \in X : x \sigma A\}\) is called the convexity hull of a subset \(A\). \(A\) is said to be convex \([1]\) if \(G(A) = A\).

Theorem 1 \([1]\). For a preconvexity space \((X, \sigma)\),

1. \(G(\emptyset) = \emptyset\).
2. \(A \subseteq G(A)\) for all \(A \subseteq X\).
3. If \(A \subseteq B\), then \(G(A) \subseteq G(B)\).
4. \(G(G(A)) = G(A)\) for \(A \subseteq X\).

Theorem 2 \([1]\). If \(\sigma\) is a preconvexity on \(X\) and \(A \subseteq X\), then \(G(A) = \cap \{C : G(C) = C \text{ and } A \subseteq C\}\).

Theorem 3 \([1]\). Let \(\sigma\) be a preconvexity on \(X\) and \(A, B \subseteq X\). Then

1. \(A \sigma B \text{ iff } A \subseteq G(B)\).
2. \(A \sigma B \text{ iff } G(A) \sigma G(B)\).

Definition 2 \([1]\). Let \(\sigma_1, \sigma_2\) be two preconvexities on the convexity spaces \((X, \sigma_1)\) and \((Y, \sigma_2)\), respectively. A function \(f : X \rightarrow Y\) is said to be \(c\)-convex if \(A \sigma_1 B\) implies \(f(A) \sigma_2 f(B)\).

Lemma 1 \([2]\). Let \((X, \sigma)\) be a preconvexity space. Then for all \(A \subseteq X\), \(G(A) \sigma A\).

2. \(m\)-convex sets on preconvexity spaces

Definition 3. Let \((X, \sigma)\) be a preconvexity space, \(x \in X\) and \(A \subseteq X\). Then \(A\) is called an \(m\)-convex set if \(x \in A \cup F\), whenever \(x \sigma (A \cup F)\) for every convex set \(F\).

Theorem 4. Let \((X, \sigma)\) be a preconvexity space. For an \(m\)-convex set \(A\) and a convex set \(F\), \(A \cup F\) is a convex set.

Proof. If \(x \in G(A \cup F)\), then \(x \sigma (A \cup F)\). By definition of \(m\)-convex set, \(x \in (A \cup F)\) and \(G(A \cup F) = A \cup F\). Therefore, \(A \cup F\) is convex. \(\square\)

Theorem 5. Let \((X, \sigma)\) be a preconvexity space. Then

1. Both \(\emptyset\) and \(X\) are \(m\)-convex.
2. If \(A\) and \(B\) are \(m\)-convex, then \(A \cup B\) is \(m\)-convex.
3. For \(\alpha \in J\), if \(A_\alpha\) is \(m\)-convex, then \(\cap_{\alpha \in J} A_\alpha\) is \(m\)-convex.

Proof. (1) For each convex set \(F\), if \(x \sigma (F \cup \emptyset)\), then \(x \in G(F)\). Since \(G(F) = F\), it implies \(x \in F \cup \emptyset\) and hence \(\emptyset\) is \(m\)-convex. From \(X = G(X)\), obviously it follows that \(X\) is \(m\)-convex.

(2) Let \(A\) and \(B\) be \(m\)-convex subsets. For each convex set \(F\), let \(x \sigma ((A \cup B) \cup F)\). By Theorem 4, we know that \(B \cup F\) is a convex set. Since \(A\) is an \(m\)-convex set and \(x \sigma (A \cup (B \cup F))\), \(x \in (A \cup (B \cup F))\). It implies that \(A \cup B\) is \(m\)-convex.
Theorem 6. Let \(x \in m \)-convex set \(F \) be convex.

Proof. For each \(m \)-convex set \(F \), since \(\emptyset \) is a convex set, by Theorem 4, \(F \cup \emptyset = F \) is convex. \(\square \)

Example 1. Let \(X = \{a, b, c\} \) and a topology \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \). Consider a family \(S = \{A \subseteq X : A \subseteq \text{cl}(\text{int}(A))\} \), where \(\text{cl} \) and \(\text{int} \) denote closure and interior operators, respectively, in the topological space \((X, \tau) \). Set \(\text{scl}(A) = \cap\{F : A \subseteq F \text{ and } X \setminus F \in S\} \). Define \(A \sigma B \) iff \(\text{scl}(A) \subseteq \text{scl}(B) \). Then \(\sigma \) is a preconvexity on \((X, \sigma) \). Note that:

1. \(\{\emptyset, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X\} \) is the collection of all convex subsets on \((X, \sigma) \);
2. \(\{\emptyset, \{c\}, \{b, c\}, \{a, c\}, X\} \) is the collection of all \(m \)-convex subsets on \((X, \sigma) \).

This fact shows that in Theorem 6 the converse may not be true.

Definition 4. Let \((X, \sigma) \) be a preconvexity space and \(A \subseteq X \).

The set \(\text{mh}(A) = \cap\{F \subseteq X : A \subseteq F, \; F \text{ is an } m \text{-convex set}\} \) is called the \(m \)-closure of \(A \).

Lemma 2. Let \((X, \sigma) \) be a preconvexity space and \(A \subseteq X \). Then

\[G(A) \subseteq \text{mh}(A). \]

Proof. For some \(x \in G(A) \), suppose on the contrary that \(x \notin \text{mh}(A) \). Then there exists an \(m \)-convex set \(F \) such that \(A \subseteq F \) and \(x \notin F \). Since every \(m \)-convex set is convex, \(G(A) \subseteq G(F) = F \) and so \(x \notin G(A) \). It contradicts that \(x \in G(A) \). This completes that \(G(A) \subseteq \text{mh}(A) \). \(\square \)

From Theorem 5, we get the next theorem:

Theorem 7. Let \((X, \sigma) \) be a preconvexity space. Then

1. \(\text{mh}(\emptyset) = \emptyset \).
2. \(A \subseteq \text{mh}(A) \) for \(A \in X \).
3. \(\text{mh}(\text{mh}(A)) = \text{mh}(A) \) for \(A \in X \).
4. \(\text{mh}(A \cup B) = \text{mh}(A) \cup \text{mh}(B) \) for \(A, B \in X \).

3. \(mc^* \)-convex functions and \(mc \)-convex functions

In this section, we introduce the concepts of \(mc \)-convex functions and \(mc^* \)-continuous functions defined by \(m \)-convex sets and convex sets. We investigate characterizations for such functions and relationships among \(c \)-convex function, \(mc \)-convex function and \(mc^* \)-continuous function.
Definition 5. Let \((X, \sigma)\) and \((Y, \mu)\) be two preconvexity spaces. A function \(f : X \rightarrow Y\) is said to be

1. \(mc^*\)-convex if \(f^{-1}(U)\) is \(m\)-convex for each \(m\)-convex set \(U\) in \(Y\);
2. \(mc\)-convex if \(f^{-1}(U)\) is convex for each \(m\)-convex set \(U\) in \(Y\).

Theorem 8. Let \(f : X \rightarrow Y\) be a function on two preconvexity spaces \((X, \sigma)\) and \((Y, \mu)\). Then the following are equivalent:

1. \(f\) is \(mc^*\)-continuous.
2. \(f(mh(A)) \subseteq mh(f(A))\) for \(A \subseteq X\).
3. \(mh(f^{-1}(B)) \subseteq f^{-1}(mh(B))\) for \(B \subseteq Y\).

Proof. (1) ⇒ (2) Let \(F\) be any \(m\)-convex set in \(Y\) containing \(f(A)\). Then \(f^{-1}(F)\) is an \(m\)-convex set containing \(A\). Since \(mh(A)\) is the smallest \(m\)-convex set containing \(A\), \(A \subseteq mh(A) \subseteq f^{-1}(F)\), and \(f(A) \subseteq f(mh(A)) \subseteq F\). This implies that \(f(mh(A)) \subseteq mh(f(A))\).

(2) ⇒ (3) Obvious.

(3) ⇒ (1) Obvious. □

Theorem 9. Let \(f : X \rightarrow Y\) be a function on two preconvexity spaces \((X, \sigma)\) and \((Y, \mu)\). Then the following are equivalent:

1. \(f\) is \(mc\)-convex.
2. \(f(G(A)) \subseteq mh(f(A))\) for \(A \subseteq X\).
3. \(G(f^{-1}(B)) \subseteq f^{-1}(mh(B))\) for \(B \subseteq Y\).

Proof. (1) ⇒ (2) Let \(F\) be any \(m\)-convex set in \(Y\) containing \(f(A)\); then \(f^{-1}(F)\) is a convex set containing \(A\). So \(A \subseteq G(A) \subseteq f^{-1}(F)\) and \(f(A) \subseteq f(G(A)) \subseteq F\). This implies that \(f(G(A)) \subseteq mh(f(A))\).

(2) ⇒ (3) For \(B \subseteq Y\), it is \(f(G(f^{-1}(B))) \subseteq mh(B)\) by (2). Thus we get the result.

(3) ⇒ (1) It is obvious. □

Theorem 10. Let \(f : X \rightarrow Y\) be a function on two preconvexity spaces \((X, \sigma)\) and \((Y, \mu)\). Then if \(f\) is \(c\)-convex, then it is \(mc\)-convex.

Proof. Let \(F\) be any \(m\)-convex set in \(Y\). By Theorem 6 and Lemma 1, \(F\) is convex and \(G(F) \sigma F\). From \(f\) is \(c\)-convex and Lemma 2,

\[f(G(F)) \sigma f(F) \subseteq G(f(F)) \subseteq mh(f(F))\]

Hence by Theorem 9, \(f\) is \(mc\)-convex. □

Remark 1. Finally, we have the following implications but the converses are not true in general.

\[mc^*\)-continuous ⇒ \(mc\)-convex ⇔ \(c\)-convex \]
Example 2. Let $X = \{a, b, c\}$ and a topology $\tau_2 = \emptyset, \{a\}, X$. Consider a family $S = \{A \subseteq X : A \subseteq cl(int(A))\}$, where cl and int denote closure and interior operators, respectively, in the topological space (X, τ_2). Set $scl(A) = \cap\{F : A \subseteq F \text{ and } X - F \in S\}$. Define $A \mu B$ iff $scl(A) \subseteq scl(B)$. Then μ is a preconvexity on (X, μ) and

1. $C = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ is the collection of all convex subsets in (X, μ);
2. C is also the collection of all m-convex subsets of (X, μ).

Consider the preconvexity σ defined in Example 1. Then we obtain the following things:

(i) The identity function $f : (X, \sigma) \to (X, \mu)$ is mc-convex. For an m-convex set $A = \{b\}$ in (X, μ), $f^{-1}(A)$ is not m-convex in (X, σ). Therefore, f is not mc^*-convex.

(ii) Let us define a function $f : (X, \mu) \to (X, \sigma)$ as the following: $f(a) = f(b) = b, f(c) = c$. Then f is m-convex. For a convex set $F = \{b\}$ in (X, σ), $f^{-1}(F) = \{a, b\}$ is not convex in (X, μ). Consequently, f is not c-convex.

References

Won Keun Min received the M.S. and Ph.D. degrees from Korea University, in 1983 and 1987, respectively. Since 1988 he has been at Kangwon National University. His research interests include fuzzy topology and minimal structures.

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea
e-mail: wkmin@kangwon.ac.kr