Effect of Lateral and Posterior Placement of Single-Bundle and Double-Bundle ACL Reconstructions on Tibial Internal Rotation During Single-Leg Landing

전방십자인대 한다발재건술의 후외측다발 재건 및 두다발재건술이 외발착지 동작 시에 경골내회전에 미치는 영향

  • 신충수 (서강대학교 기계공학과)
  • Received : 2010.09.21
  • Accepted : 2011.02.15
  • Published : 2011.05.01


Anterior cruciate ligament (ACL) injuries are treatedwith surgical reconstruction. Although ACL consists of two functional bundles, only the anteromedial bundle is surgically reconstructed, and the effect of the reconstruction of the posterolateral bundle is unknown. The purpose of this study is to investigate the role of the posterolateral bundle and the effect of double-bundle reconstruction during single-leg landing. A 3D dynamic knee with various ACL reconstructed models was created using MRI, and single-leg landing motion was simulated using in-vivo human experimental data. The results showed that the lateral shift of the tibial insertion of the anteromedial bundle and the posterolateral bundle of the ACL constrain the tibial internal rotation more efficiently than a single anteromedial bundle can. In addition, double-bundle ACL reconstruction is less sensitive to inaccuracies in the tibial tunnel placement.


Anterior Cruciate Ligament Reconstruction;Posterolateral Bundle;Double-bundle Reconstruction;Knee Model;Single-Leg Landing


Supported by : 한국연구재단, 서강대학교


  1. Kannus, P. and Jarvinen, M., 1989, "Posttraumatic Anterior Cruciate Ligament Insufficiency as a Cause of Osteoarthritis in a Knee Joint," Clinical Rheumatology, Vol. 8, No. 2, pp. 251-260.
  2. Aglietti, P., Buzzi, R., Giron, F., Simeone, A. J. and Zaccherotti, G., 1997, "Arthroscopic-Assisted Anterior Cruciate Ligament Reconstruction with the Central Third Patellar Tendon. A 5-8-Year Follow-up," Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 5, No. 3, pp. 138-144.
  3. Maletius, W. and Messner, K., 1999, "Eighteen- to Twenty-Four-Year Follow-up After Complete Rupture of the Anterior Cruciate Ligament," The American Journal of Sports Medicine, Vol. 27, No. 6, pp. 711-717.
  4. Roos, E. M., 2005, "Joint Injury Causes Knee Osteoarthritis in Young Adults," Current Opinion in Rheumatology, Vol. 17, No. 2, pp. 195-200.
  5. Georgoulis, A. D., Papadonikolakis, A., Papageorgiou, C. D., Mitsou, A. and Stergiou, N., 2003, "Three-Dimensional Tibiofemoral Kinematics of the Anterior Cruciate Ligament-Deficient and Reconstructed Knee During Walking," The American Journal of Sports Medicine, Vol. 31, No. 1, pp. 75-79.
  6. Wilson, D. R., McWalter, E. J. and Johnston, J. D., 2008, "The Measurement of Joint Mechanics and Their Role in Osteoarthritis Genesis and Progression," Rheumatic Diseases Clinics of North America, Vol. 34, No. 3, pp. 605-622.
  7. Chouliaras, V., Ristanis, S., Moraiti, C., Stergiou, N. and Georgoulis, A. D., 2007, "Effectiveness of Reconstruction of the Anterior Cruciate Ligament with Quadrupled Hamstrings and Bone-Patellar Tendon-Bone Autografts: an in vivo Study Comparing Tibial Internal-External Rotation," The American Journal of Sports Medicine, Vol. 35, No. 2, pp. 189-196.
  8. Woo, S. L., Abramowitch, S. D., Kilger, R. and Liang, R., 2006, "Biomechanics of Knee Ligaments: Injury, Healing, and Repair," Journal of Biomechanics, Vol. 39, No. 1, pp. 1-20.
  9. Yagi, M., Wong, E. K., Kanamori, A., Debski, R. E., Fu, F. H. and Woo, S. L., 2002, "Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction," The American Journal of Sports Medicine, Vol. 30, No. 5, pp. 660-666.
  10. Woo, S. L., Kanamori, A., Zeminski, J., Yagi, M., Papageorgiou, C. and Fu, F. H., 2002, "The Effectiveness of Reconstruction of the Anterior Cruciate Ligament with Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads," Journal of Bone and Joint Surgery. American Volume, Vol. 84-A, No. 6, pp. 907-914.
  11. Loh, J. C., Fukuda, Y., Tsuda, E., Steadman, R. J., Fu, F. H. and Woo, S. L., 2003, "Knee Stability and Graft Function Following Anterior Cruciate Ligament Reconstruction: Comparison Between 11 O'clock and 10 O'clock Femoral Tunnel Placement.," Arthroscopy, Vol. 19, No. 3, pp. 297-304.
  12. Yamamoto, Y., Hsu, W. H., Woo, S. L., Van Scyoc, A. H., Takakura, Y. and Debski, R. E., 2004, "Knee Stability and Graft Function After Anterior Cruciate Ligament Reconstruction: A Comparison of a Lateral and an Anatomical Femoral Tunnel Placement," The American Journal of Sports Medicine, Vol. 32, No. 8, pp. 1825-1832.
  13. Tashman, S., Kopf, S. and Fu, F. H., 2008, "The Kinematic Basis of ACL Reconstruction," Operative Techniques in Sports Medicine, Vol. 16, No. 3, pp. 116-118.
  14. Yasuda, K., Kondo, E., Ichiyama, H., Tanabe, Y. and Tohyama, H., 2006, "Clinical Evaluation of Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction Procedure Using Hamstring Tendon Grafts: Comparisons Among 3 Different Procedures," Arthroscopy, Vol. 22, No. 3, pp. 240-251.
  15. Zelle, B. A., Brucker, P. U., Feng, M. T. and Fu, F. H., 2006, "Anatomical Double-Bundle Anterior Cruciate Ligament Reconstruction," Sports Medicine (Auckland, N.Z.), Vol. 36, No. 2, pp. 99-108.
  16. Harner, C. D. and Poehling, G. G., 2004, "Double Bundle or Double Trouble?" Arthroscopy, Vol. 20, No. 10, pp. 1013-1014.
  17. Kocher, M. S., Steadman, J. R., Briggs, K. K., Sterett, W. I. and Hawkins, R. J., 2004, "Relationships Between Objective Assessment of Ligament Stability and Subjective Assessment of Symptoms and Function After Anterior Cruciate Ligament Reconstruction," The American Journal of Sports Medicine, Vol. 32, No. 3, pp. 629-634.
  18. Shin, C. S., Chaudhari, A. M. and Andriacchi, T. P., 2007, "The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study," Journal of Biomechanics, Vol. 40, No. 5, pp. 1145-1152.
  19. Shelburne, K. B. and Pandy, M. G., 1997, "A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions," Journal of Biomechanics, Vol. 30, No. 2, pp. 163-176.
  20. Yu, C. H., Walker, P. S. and Dewar, M. E., 2001, "The Effect of Design Variables of Condylar Total Knees on the Joint Forces in Step Climbing Based on a Computer Model," Journal of Biomechanics, Vol. 34, No. 8, pp. 1011-1021.
  21. Garg, A. and Walker, P. S., 1990, "Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphics Model," Journal of Biomechanics, Vol. 23, No. 1, pp. 45-58.
  22. Lotstedt, P., 1982, "Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints," SIAM Journal on Applied Mathematics, Vol. 42, No. 2, pp. 281-296.
  23. Nam, E. K., Makhsous, M., Koh, J., Bowen, M., Nuber, G. and Zhang, L. Q., 2004, "Biomechanical and Histological Evaluation of Osteochondral Transplantation in a Rabbit Model," The American Journal of Sports Medicine, Vol. 32, No. 2, pp. 308-316.
  24. Oni, O. O. and Morrison, C. J., 1998, "The Mechanical Quality of Osteophytes," Injury, Vol. 29, No. 1, pp. 31-33.
  25. Withrow, T. J., Huston, L. J., Wojtys, E. M. and Ashton-Miller, J. A., 2006, "The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an in Vitro Simulated Jump Landing," The American Journal of Sports Medicine, Vol. 34, No. 2, pp. 269-274.
  26. Siebold, R., Ellert, T., Metz, S. and Metz, J., 2008, "Tibial Insertions of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament: Morphometry, Arthroscopic Landmarks, and Orientation Model for Bone Tunnel Placement," Arthroscopy, Vol. 24, No. 2, pp. 154-161.
  27. Chaudhari, A. M. and Andriacchi, T. P., 2006, "The Mechanical Consequences of Dynamic Frontal Plane Limb Alignment for Non-Contact ACL Injury," Journal of Biomechanics, Vol. 39, No. 2, pp. 330-338.
  28. Kanamori, A., Woo, S. L., Ma, C. B., Zeminski, J., Rudy, T. W., Li, G. and Livesay, G. A., 2000, "The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology," Arthroscopy, Vol. 16, No. 6, pp. 633-639.
  29. Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A. and Slauterbeck, J. L., 1995, "Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces," Journal of Orthopaedic Research, Vol. 13, No. 6, pp. 930-935.
  30. Ferrell, W. R., Gandevia, S. C. and McCloskey, D. I., 1987, "The Role of Joint Receptors in Human Kinaesthesia when Intramuscular Receptors Cannot Contribute," The Journal of Physiology, Vol. 386, pp. 63-71.
  31. Brandt, K. D., Braunstein, E. M., Visco, D. M., O'Connor, B., Heck, D. and Albrecht, M., 1991, "Anterior (Cranial) Cruciate Ligament Transection in the Dog: A Bona Fide Model of Osteoarthritis, not Merely of Cartilage Injury and Repair," The Journal of Rheumatology, Vol. 18, No. 3, pp. 436-446.