DOI QR코드

DOI QR Code

Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC

전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용

  • Na, Hee-Soo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Hwang, Hyung-Kwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Chan-Min (The Graduate Program in New Energy and Battery Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 나희수 (연세대학교 화공생명공학과) ;
  • 황형권 (연세대학교 화공생명공학과) ;
  • 이찬민 (연세대학교 신에너지전지융합기술협동과정) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2011.07.31
  • Accepted : 2011.10.21
  • Published : 2011.10.30

Abstract

The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

Acknowledgement

Supported by : 한국연구재단, 한국에너지 기술 평가원(KETEP)

References

  1. B. C. H. Steele, A. Heinzel, "Materials for fuelcell technologies", Nature, Vol. 414, 2001, pp. 345-352. https://doi.org/10.1038/35104620
  2. S. Bose, T. Kuila, T. X. H. Nquyen, N. H. Kim, K. Laua, J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., Vol. 36, 2011, pp. 813-843. https://doi.org/10.1016/j.progpolymsci.2011.01.003
  3. B. P. Tripathi, V. K. Shahi, "Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Prog. Polym. Sci., Vol. 36, 2011, pp. 945-979. https://doi.org/10.1016/j.progpolymsci.2010.12.005
  4. O. Savadogo, "Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell(PEFC) applications", J. Power Sources, Vol. 127, 2004, pp. 135-161. https://doi.org/10.1016/j.jpowsour.2003.09.043
  5. Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim, H. I. Lee, "Organic-inorganic composite membranes as addition of $SiO_{2}$ for high temperature- operation in polymer electrolyte membrane fuel cells (PEMFCs)", Electrochim. Acta, Vol. 49, 2004, pp. 4787-4796.
  6. 박기태, 전정환, 최동웅, 김성현, "고온/저가 습 PEMFC운전을 위한 $Nafion^{(R)}/ZrO_{2}-TiO_{2}$ 복합 전해질 막의 특성연구, 한국수소 및 신에너지학회 논문집, Vol. 22, No. 1, 2011, pp. 60-68.
  7. F. Meng, N. V. Aieta, S. F. Dex, J. L. Horan, D. Williamson, M. H. Frey, P. Pham, J. A. Turner, M. A. Yandrasits, S. J. Hamrock, A. M. Herring, "Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, $H_{3}PW_{12}O_{40}$ or $H_{4}SiW_{12}O_{40}$", Electrochim. Acta, Vol. 53, 2007, pp. 372-1378.
  8. 황용구, 이광문, 우제영, 정장훈, 문상봉, 강안수, "수전해용 공유가교 SPEEK/HPA 복합막의 제조 및 물리화학적 특성", 한국수소 및 신에너지학회 논문집, Vol. 20, No. 2, 2009, pp.95-103.
  9. H. J. Kim, Y. G. Shulm H. Han, "Synthesis of heteropolyacid($H_{3}PW_{12}O_{40}$)/$SiO_{2}$ nano-particl-es and their catalytic properties", Appl. Catal. A-Gen., Vol. 299, 2006, pp. 46-51. https://doi.org/10.1016/j.apcata.2005.10.010
  10. Y. Izumi, K. Hisano, T. Hida, "Acid catalysis of silica-included heteropolyacid in polar reaction media", Appl. Catal. A-Gen., Vol. 181, 1999, pp. 277-282. https://doi.org/10.1016/S0926-860X(98)00399-8
  11. H. J. Kim, Y. G. Shul, H. Han, "Sulfonicfunctionalized heteropolyacid-silica nanoparticles for high temperature operation of a direct methanol fuel cell", J. Power Sources, Vol. 18, No.1, 2006, pp. 137-142.
  12. A. Greiner, J. H. Wendorff, "Electrospining: A fascinating Method for the Preparation of Ultrathin Fibers", Angew, Chem. -Int. Edit., Vol. 46, 2007, pp. 5670-5703. https://doi.org/10.1002/anie.200604646
  13. J. Choi, K. M. Lee, R. Wycisk, P. N. Pintauro, P. T. Mather, "Nanofiber Network Ion-Exchange Membranes", Macromolecules, Vol. 41, No. 13, 2008, pp. 4569-4572. https://doi.org/10.1021/ma800551w
  14. 이홍연, 황형권, 박상선, 최성원, 설용건, "Nafion 용액 함침과 전기방사를 이용한 고분자 전해질 연료전지용 폴리에테르술폰 막", 멤브레인, Vol. 20, No.1, 2010, pp. 1-7.
  15. Y. Liu, S. Sagi, R. Chandrasekar, L. Zhang, N. E. Hedin, H. Fong, "Preparation and Characterization of Electrospun $SiO_{2}$/Nano fibers", J. Nanosci. Nanotechnol., Vol. 8, No. 3, 2008, pp. 1528-1536. https://doi.org/10.1166/jnn.2008.043
  16. S. W. Lee, Y. U. Kim, S. S. Choi, T. Y. Park, Y. L. Joo, S. G. Lee, "Preparation of $SiO_{2}/TiO_{2}$ composite fibers by sol-gel reaction and electrospinning", Mater. Lett., Vol. 61, No. 3, 2007, pp. 889-893. https://doi.org/10.1016/j.matlet.2006.06.020
  17. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, S. gottesfeld, "Charaterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy" J. Electrochem. Soc., Vol.143, No. 2, 1996, pp. 587-599. https://doi.org/10.1149/1.1836485