DOI QR코드

DOI QR Code

Modeling of Solid Particle-Slag Interactions in Entrained Gasification Reactor

분류층 가스화기에서의 고체 입자-슬래그 간 상호 작용에 대한 모델링

  • Chi, Jun-Hwa (Power Generation Lab., KEPCO Research Institute) ;
  • Kim, Ki-Tae (Power Generation Lab., KEPCO Research Institute) ;
  • Kim, Sung-Chul (Power Generation Lab., KEPCO Research Institute) ;
  • Chung, Jae-Hwa (Power Generation Lab., KEPCO Research Institute) ;
  • Ju, Ji-Sun (Power Generation Lab., KEPCO Research Institute) ;
  • Kim, Ui-Sik (Power Generation Lab., KEPCO Research Institute)
  • 지준화 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 김기태 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 김성철 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 정재화 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 주지선 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 김의식 (한국전력공사 전력연구원 수화력발전연구소)
  • Received : 2011.09.29
  • Accepted : 2011.10.21
  • Published : 2011.10.30

Abstract

Mathematical models for char-slag interaction and near-wall particle segregation developed by Montagnaro et. al. were applied to predict various aspects of coal gasification in an up-flow entrained gasifier of commercial scale. For this purpose, some computer simulations were performed using gPROMS as the numerical solver. Typical design parameters and operating conditions of the commercial gasifiers were used as input values for the simulation. Development of a densely dispersed phase of solid carbon was found to have a critical effect on both carbon conversion and ash flow behavior. In general, such a slow-moving phase was turned out to enhance carbon conversion by lengthening the residence time of char or soot particles. Furthermore, it was also found that guiding the transfer of char or soot into the closer part of the wall to coal burner is favorable in terms of gasification efficiency and vitrified ash collection. Finally, to a certain degree densely dispersed phase of carbon showed an yield-enhancing effect of syngas.

References

  1. 지준화, 오 민, 김시문, 김미영, 이중원, 김의식, "석탄 가스화 반응의 동적 거동 전산 모사", 한국수소및신에너지학회 논문집(2011.6), 제22권 제3호 pp. 386-401.
  2. 이중원, 김미영, 지준화, 김시문, 박세익, "석탄 가스화공정 모델링에 관한 연구", 한국수소및신에너지학회 논문집(2010. 10), 제21권 제5호 pp. 425-343.
  3. ASPEN Technology, Inc. "ASPEN Plus Model for Entrained Flow Coal Gasifier", v7.2, http://support.aspentech.com
  4. 김미영, 주용진, 최인규, 이중원, "300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사", 한국수소및신에너지학회논문집(2010. 10), 제21권 제5호, pp. 460-469.
  5. C. Y. Wen and T. Z. Chaung, "Entrainment Coal Gasification Modeling", Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 4, 1979, pp. 684-695. https://doi.org/10.1021/i260072a020
  6. Rakesh Govind and Jogen Shah, "Modeling and Simulation of An Entrained Flow Coal Gasifier", AIChE Journal, Vol. 30, No. 1. pp. 79-92.
  7. H. Watanabe and M. Otaka, "Numerical simulation of coal gasification in entrained flow coal gasifier", Fuel, Vol. 85, 2006, pp. 1935-1943. https://doi.org/10.1016/j.fuel.2006.02.002
  8. 송지훈, 강민웅, 서동균, 임성진, 백민수, 황정호, "300MW급 Shell형 1단 분류층 석탄가스화기의 전산수치해석", 한국수소및신에너지학회 논문집, 제21권 제3호, 2010, pp. 227-240.
  9. Enrico Biagini, Alessio Bardi, Gabriele Pannocchia, and Leonardo Tognotti, "Development of an Entrained Flow Gasifier Model for Process Optimization Study", Ind. Eng. Chem. Res., Vol. 48, 2009, pp. 9028-9033. https://doi.org/10.1021/ie801804g
  10. Fabio Montagnaro and Piero Salatino, "Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal", Combustion and Flame, Vol. 157, 2010, pp. 874-883. https://doi.org/10.1016/j.combustflame.2009.12.006
  11. G. N. Shannon, P. L. Rozelle, Sarma V. Pisupati, S. Sridhar, "Conditions for entrainment into a FeOx containing slag for a carbon-containing particle in an entrained coal gasifier", Vol. 89, 2008, pp. 1379-1385. https://doi.org/10.1016/j.fuproc.2008.06.010
  12. M. Seggiani, "Modeling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier", Fuel, Vol. 77, 1998, pp. 1611-1621. https://doi.org/10.1016/S0016-2361(98)00075-1
  13. Tadaaki Shimizu and Hiroaki Tominaga, "A model of char capture by molten slag surface under high-temperature gasification conditions", Fuel, Vol. 85, 2006, pp. 170-178. https://doi.org/10.1016/j.fuel.2005.03.033
  14. Stephen Niksa, Gui-Su Liu, Robert H. Hurt, "Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation", Progress in Energy and Combustion Science, Vol. 29, 2003, pp. 425-477. https://doi.org/10.1016/S0360-1285(03)00033-9
  15. Gui-Su Liu, Stephen Niksa, "Coal conversion submodels for design applications at elevated pressure, Part II. Char gasification", Progress in Energy and Combustion Science, Vol. 30, 2004, pp. 679-717. https://doi.org/10.1016/j.pecs.2004.08.001
  16. Reiji Noda, Ichiro Naruse and Kazutomo Ohtake, "Fundamentals on Combustion and Gasification Behavior of Coal Particle Trapped on Molten Slag Layer", J. Chem. Eng. Jpn., Vol. 29, 1996, pp. 235-241.
  17. X. H. Wang, D. Q. Zhao, L. B. He, L. Q. Jiang, Q. He, Y. Chen, "Modeling of a coal-fired slagging combustor: Development of a slag submodel", Combustion and Flame, Vol. 149, 2007, pp. 249-260. https://doi.org/10.1016/j.combustflame.2007.02.001
  18. H. Tominaga, T. Yamashita, T. Ando, N. Asahiro, "Simulator of Ash Formation Behavior During Pulverized Coal Combustion", IFRF Combust. J., June 2000, Article No. 200004.