DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of LiFePO4 by Citrate Process

구연산염법을 이용한 LiFePO4 합성 및 전기화학특성에 관한 연구

  • Kim, Soo-Min (Korea Institute of Ceramic Engineering & Techology) ;
  • Kim, Sang-Hun (Korea Institute of Ceramic Engineering & Techology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Techology) ;
  • Kim, Ung-Soo (Korea Institute of Ceramic Engineering & Techology) ;
  • Hwang, Hae-Jin (Department of Ceramic Engineering, In-ha Univ.) ;
  • Cho, Woo-Seok (Korea Institute of Ceramic Engineering & Techology)
  • 김수민 (한국세라믹기술원 이천분원) ;
  • 김상훈 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 김응수 (한국세라믹기술원 이천분원) ;
  • 황해진 (인하대학교 세라믹공학과) ;
  • 조우석 (한국세라믹기술원 이천분원)
  • Received : 2011.09.30
  • Accepted : 2011.10.21
  • Published : 2011.10.30

Abstract

$LiFePO_4$ is a promising cathode material for secondary lithium batteries due to its high energy density, low cost and safety. $LiFePO_4$ was synthesized by the citrate process under reductive, neutral, and oxidative, atmospheres and the crystal structure was analyzed by X-ray powder diffraction. The samples synthesized under $N_2$ and $H_2$ atmosphere showed a single phase of a olivine structure, where the samples synthesized under $O_2$ atmosphere exhibited second phase of $Fe2O_3$. All the samples synthesized at 400, 600 and $800^{\circ}C$ under $N_2$ atmosphere presented a single phase of olivine. Residual organic material was observed for the sample synthesized at $400^{\circ}C$. There was nearly no intensity difference between the samples synthesized at $600^{\circ}C$ and $800^{\circ}C$. The electrochemical characteristic of the $LiFePO_4$ synthesized at $600^{\circ}C$ in the $N_2$ atmosphere was analyzed. The result exhibited an high discharge capacity of 160 mAh/g at the first cycle, and 155-160 mAh/g after 45 cycles.

References

  1. 김훈욱, 윤순도, 이재천, 박혜령, 박찬기, 송명엽 "기계적 혼합과 고상법에 의해 합성한 LiNi1-yInyO2의 전기화학적 특성" 한국수소 및 신에너지학회 논문집 Vol. 17, No. 1, 2006, pp. 117-124.
  2. S.Yang, P.Y.Zavalij and M.S.Whittiugham "Hydrothermal synthesis of lithium iron phosphate cathodes" Electrochemistry Commu -nication Vol. 3, 2001, pp. 505-508. https://doi.org/10.1016/S1388-2481(01)00200-4
  3. M.A.E.Sanchez, G.E.S.Brito, M.C.A.Fantini, G.F.Goya and J.R.Matos "Synthesis and characterization of $LiFePO_{4}$ prepared by sol-gel technique" Solid State Ionics Vol. 177, 2006, pp. 497-500. https://doi.org/10.1016/j.ssi.2005.11.018
  4. 최광휘, 심광보 "착체중합법을 이용한 ITO 나노분말의 저온합성 및 소결거동" 한양대학교 대학원 세라믹공학과 공학석사학위논문, 2003.
  5. 류필무, 오승모 "리튬 이차전지의 양극재료인 $LiFePO_{4}$의 고온 특성에 관한 연구" 서울대학교 대학원 화학생물공학부 공학석사학위논문, 2006.
  6. W.S.Cho and Etsuo Hamada "Synthesis of ultrafine $BatiO_{3}$ particles from polymeric precursor: their structure and surface property" Journal of Alloys and Compounds Vol. 266, 1998, pp. 118-122. https://doi.org/10.1016/S0925-8388(97)00446-5
  7. H.C.Kang, D.K.Jun, B.Jin, E.M.Jin, K.H.Park, H.B.Gu and K.W.Kim "Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling" Journal of Power Sources, Vol. 179, 2008, pp. 340-346. https://doi.org/10.1016/j.jpowsour.2007.12.093
  8. Y.S.Jeon, E.M.Jin, B.Jin, D.K.Jun, Z.J.Han and H.B.Gu "Structural and electrochemical characterization of LiFePO4 synthesized by hydrothermal method" Transactions on Electrical and Electronic Materials, Vol. 8, No. 1, 2007, pp. 41-45. https://doi.org/10.4313/TEEM.2007.8.1.041