DOI QR코드

DOI QR Code

GLOBAL STABILITY OF THE VIRAL DYNAMICS WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE

  • Zhou, Xueyong (School of Mathematical Sciences Nanjing Normal University, College of Mathematics and Information Science Xinyang Normal University) ;
  • Cui, Jingan (School of Science Beijing University of Civil Engineering and Architecture)
  • Received : 2009.09.18
  • Published : 2011.05.31

Abstract

It is well known that the mathematical models provide very important information for the research of human immunodeciency virus type. However, the infection rate of almost all mathematical models is linear. The linearity shows the simple interaction between the T-cells and the viral particles. In this paper, a differential equation model of HIV infection of $CD4^+$ T-cells with Crowley-Martin function response is studied. We prove that if the basic reproduction number $R_0$ < 1, the HIV infection is cleared from the T-cell population and the disease dies out; if $R_0$ > 1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if $R_0$ > 1. Numerical simulations are presented to illustrate the results.

References

  1. S. Bonhoeffer, R. M. May, G. M. Shaw, and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA 94 (1997), 6971-6976. https://doi.org/10.1073/pnas.94.13.6971
  2. S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, and A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol. 247 (2007), no. 1, 23-35. https://doi.org/10.1016/j.jtbi.2007.02.017
  3. P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragon y population, J. North. Am. Benth. Soc. 8 (1989), 211-221. https://doi.org/10.2307/1467324
  4. R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci. 165 (2000), 27-39. https://doi.org/10.1016/S0025-5564(00)00006-7
  5. R. V. Culshaw, S. G. Ruan, and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol. 48 (2004), no. 5, 545-562. https://doi.org/10.1007/s00285-003-0245-3
  6. F. R. Gantmacher, The Theory of Matrices, Chelsea Publ. Co., New York, 1959.
  7. M. W. Hirsch, Systems of differential equations which are competitive or cooperative IV, SIAM J. Math. Anal. 21 (1990), 1225-1234. https://doi.org/10.1137/0521067
  8. P. De Leenheer and H. L. Smith, Virus dynamics: a global analysis, SIAM J. Appl. Math. 63 (2003), no. 4, 1313-1327. https://doi.org/10.1137/S0036139902406905
  9. D. Li and W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl. 335 (2007), no. 1, 683-691. https://doi.org/10.1016/j.jmaa.2007.02.006
  10. A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proc. R. Soc. Lond. B 268 (2001), 847-854. https://doi.org/10.1098/rspb.2000.1572
  11. A. R. McLean and T. B. L. Kirkwood, A model of human immunode ciency virus infection in T helper cell clones, J. Theor. Biol. 147 (1990), 177-203. https://doi.org/10.1016/S0022-5193(05)80051-7
  12. A. R. McLean, M. M. Rosado, F. Agenes, R. Vasconcellos, and A. A. Freitas, Resource competition as a mechanism for B cell homeostasis, Proc. Natl Acad. Sci. USA 94 (1997), 5792-5797. https://doi.org/10.1073/pnas.94.11.5792
  13. L. Q. Min, Y. M. Su, and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mountain J. Math. 38 (2008), no. 5, 1573-1585. https://doi.org/10.1216/RMJ-2008-38-5-1573
  14. J. E. Mittler, B. Sulzer, A. U. Neumann, and A. S. Perelson, In uence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci. 152 (1998), 143-163. https://doi.org/10.1016/S0025-5564(98)10027-5
  15. J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain J. Math. 20 (1990), no. 4, 857-872. https://doi.org/10.1216/rmjm/1181073047
  16. N. Nagumo, Uber die lage der integralkurven gewohnlicher differential gleichungen, Proc. Phys-Math. Soc. Japan 24 (1942), 551-559.
  17. P. W. Nelson, J. D. Murray, and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), no. 2, 201-215. https://doi.org/10.1016/S0025-5564(99)00055-3
  18. A. S. Perelson, D. E. Kirschner, and R. de Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci. 114 (1993), 81-125. https://doi.org/10.1016/0025-5564(93)90043-A
  19. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Rev. 41 (1999), 3-44. https://doi.org/10.1137/S0036144598335107
  20. A. S. Perelson, A. U. Neumann, M. Markowitz, et al., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), 1582-1586. https://doi.org/10.1126/science.271.5255.1582
  21. H. L. Smith, Monotone dynamical systems: An Introduction to the theory of competitive and cooperative systems, Trans. Amer. Math. Soc., vol. 41, 1995.
  22. H. L. Smith , Systems of ordinary differential equations which generate an order preserving flow, SIAM Rev. 30 (1998), 87-98.
  23. X. Y. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. 329 (2007), no. 1, 281-297. https://doi.org/10.1016/j.jmaa.2006.06.064
  24. H. R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAMJ. Math. Anal. 24 (1993), 407-435. https://doi.org/10.1137/0524026
  25. X. Y. Zhou, X. Y. Song, and X. Y. Shi, A differential equation model of HIV infection of CD4+CD4+ T-cells with cure rate, J. Math. Anal. Appl. 342 (2008), no. 2, 1342-1355. https://doi.org/10.1016/j.jmaa.2008.01.008
  26. X. Y. Zhou, X. Y. Song, and X. Y. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math. Comput. 199 (2008), no. 1, 23-38. https://doi.org/10.1016/j.amc.2007.09.030
  27. H. R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations 110 (1994), no. 1, 143-156. https://doi.org/10.1006/jdeq.1994.1063

Cited by

  1. Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate vol.2013, 2013, https://doi.org/10.1155/2013/431257
  2. Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate vol.2016, 2016, https://doi.org/10.1155/2016/3903726
  3. Pattern analysis of a modified Leslie–Gower predator–prey model with Crowley–Martin functional response and diffusion vol.67, pp.8, 2014, https://doi.org/10.1016/j.camwa.2014.02.016
  4. Partial Differential Equations of an Epidemic Model with Spatial Diffusion vol.2014, 2014, https://doi.org/10.1155/2014/186437
  5. Global dynamics for an HIV infection model with Crowley-Martin functional response and two distributed delays 2017, https://doi.org/10.1007/s11424-017-6038-3
  6. Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response vol.38, pp.18, 2015, https://doi.org/10.1002/mma.3455
  7. Dynamics of a Fractional Order HIV Infection Model with Specific Functional Response and Cure Rate vol.2017, 2017, https://doi.org/10.1155/2017/8372140
  8. A New Approach to Global Stability of Discrete Lotka-Volterra Predator-Prey Models vol.2015, 2015, https://doi.org/10.1155/2015/674027
  9. Stability analysis of a virus dynamics model with general incidence rate and two delays vol.221, 2013, https://doi.org/10.1016/j.amc.2013.07.005
  10. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate vol.21, pp.1, 2015, https://doi.org/10.3934/dcdsb.2016.21.133
  11. Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses vol.43, pp.1-2, 2013, https://doi.org/10.1007/s12190-013-0663-3
  12. Global Stability Analysis for Vector Transmission Disease Dynamic Model with Non-linear Incidence and Two Time Delays vol.18, pp.4, 2015, https://doi.org/10.1080/09720502.2014.1001561
  13. Multiplicity and Uniqueness of Positive Solutions for a Predator–Prey Model with C–M Functional Response vol.139, pp.1, 2015, https://doi.org/10.1007/s10440-014-9985-x
  14. Global dynamics of a delay reaction–diffusion model for viral infection with specific functional response vol.34, pp.3, 2015, https://doi.org/10.1007/s40314-014-0143-x
  15. Global stability of the virus dynamics model with intracellular delay and Crowley-Martin functional response vol.37, pp.10, 2014, https://doi.org/10.1002/mma.2895
  16. Global stability for a class of HIV infection models with cure of infected cells in eclipse stage and CTL immune response 2016, https://doi.org/10.1007/s40435-016-0268-4
  17. Global stability of a virus dynamics model with intracellular delay and CTL immune response vol.38, pp.3, 2015, https://doi.org/10.1002/mma.3078
  18. Age-Structured Within-Host HIV Dynamics with Multiple Target Cells vol.138, pp.1, 2017, https://doi.org/10.1111/sapm.12135
  19. GLOBAL ANALYSIS OF AN EXTENDED HIV DYNAMICS MODEL WITH GENERAL INCIDENCE RATE vol.23, pp.03, 2015, https://doi.org/10.1142/S0218339015500217
  20. Global stability of a diffusive virus dynamics model with general incidence function and time delay vol.25, 2015, https://doi.org/10.1016/j.nonrwa.2015.03.002
  21. Global dynamics for a class of age-infection HIV models with nonlinear infection rate vol.432, pp.1, 2015, https://doi.org/10.1016/j.jmaa.2015.06.040
  22. Uniqueness and stability of a predator–prey model with C–M functional response vol.69, pp.10, 2015, https://doi.org/10.1016/j.camwa.2015.03.007
  23. Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays vol.09, pp.03, 2016, https://doi.org/10.1142/S1793524516500467
  24. Global Dynamics of HIV Infection of CD4+T Cells and Macrophages vol.2013, 2013, https://doi.org/10.1155/2013/264759
  25. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate vol.2015, 2015, https://doi.org/10.1155/2015/758362
  26. Dynamics of a Class of HIV Infection Models with Cure of Infected Cells in Eclipse Stage vol.63, pp.4, 2015, https://doi.org/10.1007/s10441-015-9263-y
  27. A numerical method for a delayed viral infection model with general incidence rate vol.28, pp.4, 2016, https://doi.org/10.1016/j.jksus.2015.10.003
  28. On the dynamics of a stochastic ratio-dependent predator–prey model with a specific functional response vol.48, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0812-3
  29. Mathematical analysis of a virus dynamics model with general incidence rate and cure rate vol.13, pp.4, 2012, https://doi.org/10.1016/j.nonrwa.2011.12.015
  30. Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays vol.27, 2016, https://doi.org/10.1016/j.nonrwa.2015.07.014
  31. Global dynamics of a virus dynamical model with general incidence rate and cure rate vol.16, 2014, https://doi.org/10.1016/j.nonrwa.2013.09.002
  32. An SEIR Epidemic Model with Relapse and General Nonlinear Incidence Rate with Application to Media Impact 2017, https://doi.org/10.1007/s12346-017-0231-6
  33. Qualitative Analysis of a Predator–Prey Model with Crowley–Martin Functional Response vol.25, pp.09, 2015, https://doi.org/10.1142/S0218127415501102
  34. A generalized virus dynamics model with cell-to-cell transmission and cure rate vol.2016, pp.1, 2016, https://doi.org/10.1186/s13662-016-0906-3
  35. Global properties of a discrete viral infection model with general incidence rate vol.39, pp.5, 2016, https://doi.org/10.1002/mma.3536
  36. Global properties for an age-structured within-host model with Crowley–Martin functional response vol.10, pp.02, 2017, https://doi.org/10.1142/S1793524517500309
  37. Global stability for SIRS epidemic models with general incidence rate and transfer from infectious to susceptible pp.2296-4495, 2018, https://doi.org/10.1007/s40590-018-0211-0
  38. Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response vol.37, pp.3, 2018, https://doi.org/10.1007/s40314-017-0543-9