DOI QR코드

DOI QR Code

MINIMAL NONCOMMUTATIVE REVERSIBLE AND REFLEXIVE RINGS

  • Kim, Byung-Ok (Department of Mathematics Korea Science Academy) ;
  • Lee, Yang (Department of Mathematics Pusan National University)
  • Received : 2009.10.19
  • Published : 2011.05.31

Abstract

The reflexiveness and reversibility were introduced by Mason and Cohn respectively. The structures of minimal reversible rings and minimal reflexive rings are completely determined. The term minimal means having smallest cardinality.

References

  1. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  2. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  3. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 376-377. https://doi.org/10.2307/2315402
  4. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  5. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
  6. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  7. R. Kruse and D. Price, Nilpotent Rings, Gordon and Breach, New York, 1969.
  8. T. K. Kwak and Y. Lee, Reflexive property of rings, submitted.
  9. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
  10. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  11. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  12. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678
  13. W. Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), no. 3, 353-355. https://doi.org/10.1017/S000497270002983X
  14. W. Xue , Structure of minimal noncommutative duo rings and minimal strongly bounded nonduo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488

Cited by

  1. Ideal-Symmetric and Semiprime Rings vol.41, pp.12, 2013, https://doi.org/10.1080/00927872.2012.705402
  2. Reversible Rings with Involutions and Some Minimalities vol.2013, 2013, https://doi.org/10.1155/2013/650702
  3. Reflexive property on rings with involution pp.1793-7183, 2018, https://doi.org/10.1142/S1793557120500114
  4. Matrix Rings over Reflexive Rings vol.25, pp.03, 2018, https://doi.org/10.1142/S1005386718000317
  5. Some minimal rings related to 2-primal rings pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1503284