DOI QR코드

DOI QR Code

A NOTE ON HYPONORMAL TOEPLITZ OPERATORS

  • Received : 2009.10.27
  • Published : 2011.05.31

Abstract

In this note we are concerned with the hyponormality of Toeplitz operators $T_{\phi}$ with polynomial symbols ${\phi}=\bar{g}+f(f,g{\in}H^{\infty}(\mathbb{T}))$ when g divides f.

Keywords

Toeplitz operators;hyponormal

References

  1. M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597-604. https://doi.org/10.1215/S0012-7094-76-04348-9
  2. C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of some recent results in operator theory, Vol. I, 155-167, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.
  3. C. Cowen , Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809-812. https://doi.org/10.1090/S0002-9939-1988-0947663-4
  4. R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 150 (2001), no. 712, x+65 pp.
  5. P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), no. 3, 489-493. https://doi.org/10.1216/RMJ-1983-13-3-489
  6. D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153-4174. https://doi.org/10.1090/S0002-9947-96-01683-2
  7. D. R. Farenick and W. Y. Lee, On hyponormal Toeplitz operators with polynomial and circulant-type symbols, Integral Equations Operator Theory 29 (1997), no. 2, 202-210. https://doi.org/10.1007/BF01191430
  8. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  9. C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135-148. https://doi.org/10.1006/jfan.1994.1102
  10. T. Ito and T. K. Wong, Subnormality and quasinormality of Toeplitz operators, Proc. Amer. Math. Soc. 34 (1972), 157-164. https://doi.org/10.1090/S0002-9939-1972-0303334-7
  11. I. H. Kim and W. Y. Lee, On hyponormal Toeplitz operators with polynomial and symmetric-type symbols, Integral Equations Operator Theory 32 (1998), no. 2, 216- 233. https://doi.org/10.1007/BF01196519
  12. I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247-261. https://doi.org/10.1007/s002080050260
  13. I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols: An extremal case, Math. Nachr. 231 (2001), 25-38. https://doi.org/10.1002/1522-2616(200111)231:1<25::AID-MANA25>3.0.CO;2-X
  14. I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2461-2474. https://doi.org/10.1090/S0002-9947-02-02970-7
  15. I. S. Hwang and W. Y. Lee, Hyponormality of Toeplitz operators with rational symbols, Math. Ann. 335 (2006), no. 2, 405-414. https://doi.org/10.1007/s00208-006-0760-9
  16. T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753-767. https://doi.org/10.2307/2154427
  17. I. Schur, Uber Potenzreihen die im Innern des Einheitskreises beschrankt sind, J. Reine Angew. Math. 147 (1917), 205-232.
  18. K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376-381. https://doi.org/10.1007/BF01299971