해양 퇴적토전지의 발전 특성에 대한 연구

DOI QR코드

DOI QR Code

이은미;권성현;이인형;박병기;조대철
Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul

  • 투고 : 2011.03.02
  • 심사 : 2011.04.09
  • 발행 : 2011.05.31

초록

Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

키워드

Sediment cell;Marine sediment;Metal electrode;Regeneration through sediment renewal;COD reduction

참고문헌

  1. Bond, D. R., Holmes, D. E., Tender, L. M., Lovley, D.R., 2002, Electrode-reducing microorganisms that harvest energy from marine sediment, Science, 295, 483-485. https://doi.org/10.1126/science.1066771
  2. Jung, S. S., Jeon, K. S., Kim, N. Y., Kim, Y. S., Cho, C. H., 2010, Proposition of internal deduction values of thickness of steel pipe, Kor. Geotech. Soc.
  3. Duan, J., Xiang, B., Wang, X., Huang, S. M., Hou, B.,2005, Production of marine sediment corrosion by fuzzy clustering analysis, Mat. Corr., 56(7), 485-488. https://doi.org/10.1002/maco.200503861
  4. Kim, M. S., 1988, Corrosion and evaluation of metals, J.Corros. Sci., 17, 182-187.
  5. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim,M. A., Kim, B. H., 2002, A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens, Enzym. Microb. Technol.,30, 145-152. https://doi.org/10.1016/S0141-0229(01)00478-1
  6. Kwon, S. H., Song, H. J., Lee, E. M., Cho, D., Rhee, I.H., 2010, Electricity Generation and Decontamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment, J. Environ. Sci., 19(8), 951-960. https://doi.org/10.5322/JES.2010.19.8.951
  7. Liu, H., Logan, B. E., 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040-4046. https://doi.org/10.1021/es0499344
  8. Logan, B. E., Regan, J. M., 2006, Electricity- producing bacterial communities in microbial fuel cells, Trend in Microbiol., 14(12), 512-518. https://doi.org/10.1016/j.tim.2006.10.003
  9. Nealson, K .H., 2010, Sediment reactions defy dogma,Nature, 463, 1033-1034. https://doi.org/10.1038/4631033a
  10. Reimers, C. E, Tender, L. M, Fertig, S. J., Wang, W., 2001, Harvesting energy from the marine sediment-water interface, Environ. Sci. Technol., 35(1), 192-195. https://doi.org/10.1021/es001223s
  11. Rousseau, C., Baraud, F., Leleyter, L., Gil, O., 2009, Cathodic protection by zinc sacrificial anodes: Impact on marine sediment metallic contamination, J. Haz. Mat., 167, 953-958. https://doi.org/10.1016/j.jhazmat.2009.01.083
  12. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes,D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., Lovley, D. R., 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821-825. https://doi.org/10.1038/nbt716
  13. Wang, X., Duan, J., Li, Y., Zhang, J., Ma, S., Hou, B.,2005, Corrosion of steel structures in sea-bed sediment, Bull. Mat. Sci., 28(2), 81-85. https://doi.org/10.1007/BF02704223
  14. Zhang, J., Hou, B., Liu, Y., 2000, Effect of Sulfate Reducing Bacteria on Galvanic Action of A3 Steel in Sea Mud, Oceanol. limnol. Sinica, 31(4), 452-458.