DOI QR코드

DOI QR Code

Proteomic Analysis of Bovine Longissimus Muscle Satellite Cells during Adipogenic Differentiation

  • Rajesh, Ramanna Valmiki (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Mi-Rim (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Heo, Kang-Nyeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Yoon, Du-Hak (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
  • Received : 2010.09.29
  • Accepted : 2010.11.22
  • Published : 2011.05.01

Abstract

Satellite cells are skeletal muscle progenitor/stem cells that reside between the basal lamina and plasma membranes of skeletal fibers in vivo. These cells can give rise to both myogenic and adipogenic cells. Given the possible role for differentiation of satellite cells into adipocytes in marbling and in some pathological disorders like sarcopenia, knowledge of the proteins involved in such process remains obscure. Using two-dimensional polyacrylamide gel electrophoresis coupled with mass spectrometry, we investigated the proteins that are differentially expressed during adipogenic differentiation of satellite cells from bovine longissimus muscle. Our proteome mapping strategy to identify the differentially expressed intracellular proteins during adipogenic differentiation revealed a total of 25 different proteins. The proteins up-regulated during adipogenic differentiation of satellite cells like Cathepsin H precursor, Retinal dehydrogenase 1, Enoyl-CoA hydratase, Ubiquinol-cytochrome-c reductase, T-complex protein 1 subunit beta and ATP synthase D chain were found to be associated with lipid metabolism. The down-regulated proteins like LIM protein, annexin proteins, cofilin-1, Rho GDP-dissociation inhibitor 1 and septin-2, identified in the present study were found to be associated with myogenesis. These results clearly demonstrate that the adipogenic conversion of muscle satellite cells is associated with the up-regulated and down-regulated proteins involved in adipogenesis and myogenesis respectively.

Keywords

2-DE;Satellite Cells;Adipogenesis;Myogenesis;Proteome

References

  1. Ahmed, M. and P. Bergsten. 2005. Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 48:477-485. https://doi.org/10.1007/s00125-004-1661-7
  2. Ailhaud, G., P. Grimaldi and R. Negrel. 1992. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12:207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  3. Allen, R. E. and L. L. Rankin. 1990. Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 94:81-86.
  4. Asakura, A., M. Komaki and M. Rudnicki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic and adipogenic differentiation. Differentiation 68:245-253. https://doi.org/10.1046/j.1432-0436.2001.680412.x
  5. Bernard, C., I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand and J. F. Hocquette. 2007. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 55:5229-5237. https://doi.org/10.1021/jf063372l
  6. Bernlohr, D. A., M. A. Bolanowski, T. J. Kelly Jr and M. D. Lane. 1985. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 260:5563-5567.
  7. Brandt, U. and B. Trumpower. 1994. The proton motive Q cycle in mitochondria and bacteria. Crit. Rev. Biochem. Mol. Biol. 29:165-197. https://doi.org/10.3109/10409239409086800
  8. Brian, B. J., V. E. Anderson and G. A. Petsko. 2002. Structural mechanism of Enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted Fashion. Biochemistry 41:2621-2629. https://doi.org/10.1021/bi015844p
  9. Bryan, B. A., D. Li, X. Wu and M. Liu. 2005. The Rho family of small GTPases: Crucial regulators of skeletal myogenesis. Cell. Mol. Life Sci. 62:1547-1555. https://doi.org/10.1007/s00018-005-5029-z
  10. Burton, N. M., J. Vierck, L. Krabbenhoft, K. Bryne and M. V. Dodson. 2000. Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci. 22:51-61. https://doi.org/10.1023/A:1009830114804
  11. Campion, D. R. 1984. The muscle satellite cell: a review. Int. Rev. Cytol. 87:225-251. https://doi.org/10.1016/S0074-7696(08)62444-4
  12. Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regulation. Physiol. Rev. 84:209-238. https://doi.org/10.1152/physrev.00019.2003
  13. Chaze, T., B. Meunier, C. Chambon, C. Jurie and B. Picard. 2008. In vivo proteome dynamics during early bovine myogenesis. Proteomics 8:4236-4248. https://doi.org/10.1002/pmic.200701101
  14. Chung, K. Y. and B. J. Johnson. 2008. Application of cellular mechanisms to growth and development of food producing animals. J. Anim. Sci. 86:E226-E235.
  15. Chung, K. Y., D. K. Lunt, C. B. Choi, S. H. Chae, R. D. Rhoades, T. H. Adams, B. Boren and S. B. Smith. 2006. Lipid characteristics of subcutaneous adipose tissue and M. Longissimus thoracis of Angus and Wagyu steers fed to U.S. and Japanese endpoints. Meat Sci. 73:431-442.
  16. Cooper, R. N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham and G. S. Butler-Browne. 1999. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 112:2895-2901.
  17. Doumit, M. E. and R. A. Merkel. 1992. Conditions for the isolation and culture of porcine myogenic satellite cells. Tissue Cell 24:253-262. https://doi.org/10.1016/0040-8166(92)90098-R
  18. Dovas, A. and J. R. Couchman. 2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390:1-9. https://doi.org/10.1042/BJ20050104
  19. Florini, J. R., D. Z. Ewton and K. A. Magri. 1991. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53:201-216. https://doi.org/10.1146/annurev.ph.53.030191.001221
  20. Grounds, M. D., K. L. Garrett, M. C. Lai, W. E. Wright and M. W. Beilharz. 1992. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 267:99-104. https://doi.org/10.1007/BF00318695
  21. Hellmann, U., C. Wemstedt, J. Gonez and C. H. Heldin. 1995. Improvement of an "In-gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224:451-455. https://doi.org/10.1006/abio.1995.1070
  22. Holterman, C. E. and M. A. Rudnicki. 2005. Molecular regulation of satellite cell function. Semin. Cell Dev. Biol. 16:575-584. https://doi.org/10.1016/j.semcdb.2005.07.004
  23. Hu, E., P. Tontonoz and B. M. Spiegelman. 1995. Transdifferentiation of myoblast by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. USA. 92:9856-9860. https://doi.org/10.1073/pnas.92.21.9856
  24. Kim, B. W., H. J. Choo, J. W. Lee, J. H. Kim and Y. G. Ko. 2004. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp. Mol. Med. 36:476-485. https://doi.org/10.1038/emm.2004.60
  25. Kim, N. K., S. H. Lee, Y. M. Cho, E. S. Son, K. Y. Kim, C. S. Lee, D. Yoon, S. K. Im, S. J. Oh and E. W. Park. 2009. Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB Rep. 42:433-438. https://doi.org/10.5483/BMBRep.2009.42.7.433
  26. Kinoshita, M. 2006. Diversity of septin scaffolds. Curr. Opin. Cell Biol. 18:54-60. https://doi.org/10.1016/j.ceb.2005.12.005
  27. Kokta, T. A., M. V. Dodson, A. Gertler and R. A. Hill. 2004. Intercellular signaling between adipose tissue and muscle tissue. Domest. Anim. Endocrinol. 27:303-331. https://doi.org/10.1016/j.domaniend.2004.05.004
  28. Kong, Y., M. J. Flick, A. J. Kudla and S. F. Konieczny. 1996. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17:4750-4760.
  29. Kook, S. H., K. C. Choi, Y. O. Son, K. Y. Lee, I. H. Hwang, H. J. Lee, J. S. Chang, I. H. Choi and J. C. Lee. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblast and adipose-like cells. Mol. Cells 22:239-245.
  30. Kunej, T., Z. Wang, J. J. Michal, T. F. Daniels, N. S. Magnuson and Z. Jiang. 2007. Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation. Obes. Res. 15:2896-2901. https://doi.org/10.1038/oby.2007.344
  31. Landry, F., C. R. Lombardo and J. W. Smith. 2000. A method for application of samples to Matrix-Assisted Laser Desorption Ionization Time-of-Flight targets that enhances peptide detection. Anal. Biochem. 279:1-8. https://doi.org/10.1006/abio.1999.4468
  32. Lennon, N. J., A. Kho, B. J. Bacskai, S. L. Perlmutter, B. T. Hyman and R. H. Brown Jr. 2003. Dysferlin interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing. J. Biol. Chem. 278:50466-50473. https://doi.org/10.1074/jbc.M307247200
  33. Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9:493-495. https://doi.org/10.1083/jcb.9.2.493
  34. Mora, M. 1989. Fibrous-adipose replacement in skeletal muscle biopsy. Eur. Heart J. 10:103-104. https://doi.org/10.1093/eurheartj/10.suppl_D.103
  35. Nagaoka, R., K. Kusano, H. Abe and T. Obinata. 1995. Effects of cofilin on actin filamentous structures in cultured muscle cells Intracellular regulation of cofilin action. J. Cell Sci. 108:581-593.
  36. Olson, E. N. 1992. Interplay between proliferation and differentiation within myogenic lineage. Dev. Biol. 154:261-272. https://doi.org/10.1016/0012-1606(92)90066-P
  37. Perez-Perez, R., F. J. Ortega-Delgado, E. Garcia-Santos, J. A. Lopez, E. Camafeita, W. Ricart, J. M. Fernandez-Real and B. Peral. 2009. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J. Proteome Res. 8:1682-1693. https://doi.org/10.1021/pr800942k
  38. Pethick, D. W., D. N. D'Souza, F. R. Dunshea and G. S. Harper. 2005. Fat metabolism and regional distribution in ruminants and pigs-influences of genetics and nutrition. Rec. Adv. Anim. Nutr. Aust. 15:39-45.
  39. Punturieri, A., S. Filippov, E. Allen, I. Caras, R. Murray, V. Reddy and S. J. Weiss. 2000. Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med. 192:789-799. https://doi.org/10.1084/jem.192.6.789
  40. Ramirez-Zacarias, J. L., F. Castro-Munozledo and W. Kuri-Harcuch. 1992. Quantization of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil Red O. Histochemistry 97:493-497. https://doi.org/10.1007/BF00316069
  41. Renesa, J., F. Bouwmana, J. P. Nobenb, C. Eveloc, J. Robbenb and E. Mariman. 2005. Protein profiling of 3T3-L1 adipocyte differentiation and (tumor necrosis factor a-mediated) starvation. Cell. Mol. Life Sci. 62:492-503. https://doi.org/10.1007/s00018-004-4498-9
  42. Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, S. H. Lee, H. J. Lee, H. J. Park and H. Y. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85:1126-1135. https://doi.org/10.2527/jas.2006-524
  43. Wang, Y. H., K. A. Byrne, A. Reverter, G. S. Harper, M. Taniguchi, S. M. McWilliam, H. Mannen, K. Oyama and S. A. Lehnert. 2005a. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16:201-210. https://doi.org/10.1007/s00335-004-2419-8
  44. Wang, Y. H., A. Reverter, H. Mannen, M. Taniguchi, G. S. Harper, K. Oyama, K. A. Byrne, A. Oka, S. Tsuji and S. A. Lehnert. 2005b. Transcriptional profiling of muscle tissue in growing Japanese Black cattle to identify genes involved with the development of intramuscular fat. Aust. J. Exp. Agric. 45:809-820. https://doi.org/10.1071/EA05058
  45. Yada, E., K. Yamanouchi and M. Nishihara. 2006. Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J. Vet. Med. Sci. 68:479-486. https://doi.org/10.1292/jvms.68.479
  46. Yamanouchi, K., E. Yada, N. Ishiguro, T. Hosayama and M. Nishihara. 2006. Increased adipogenicity of cells from regenerating skeletal muscle cells. Exp. Cell Res. 312:2701-2711. https://doi.org/10.1016/j.yexcr.2006.04.014
  47. Yang, M., Y. Zhang, J. Pan, J. Sun, J. Liu, P. Libby, G. K. Sukhora, A. Doria, N. Katunuma, O. D. Peroni, M. Guerre-Millo, B. B. Kahn, K. Clement and G. D. Shi. 2007. Cathepsin L activity controls adipogenesis and glucose tolerance. Nat. Cell Biol. 9:970-977.
  48. Yeow, K., B. Phillips, C. Dani, C. Cabane, E. Zoubir Amri and B. Derijarda. 2001. Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line. FEBS Lett. 506:157-162. https://doi.org/10.1016/S0014-5793(01)02900-3
  49. Ziouzenkova, Q., G. Orasanu, M. Sharlach, T. E. Akiyama, J. P. Berger, J. Viereck, J. A. Hamilton, G. Tang, G. G. Dolnikowski, S. Vogel, G. Duester and J. Plutzky. 2007. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med. 13:695-702. https://doi.org/10.1038/nm1587

Cited by

  1. Glycerol-induced injury as a new model of muscle regeneration vol.374, pp.2, 2018, https://doi.org/10.1007/s00441-018-2846-6