DOI QR코드

DOI QR Code

$pep^{27}$ and lytA in Vancomycin-Tolerant Pneumococci

  • Olivares, Alma (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Trejo, Jose Olivares (Genomics Science Department, Autonomous University of Mexico City) ;
  • Arellano-Galindo, Jose (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Zuniga, Gerardo (National School of Biological Science, National Polytechnic Institute) ;
  • Escalona, Gerardo (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Vigueras, Juan Carlos (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Marin, Paula (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Xicohtencatl, Juan (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Valencia, Pedro (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico) ;
  • Velazquez-Guadarrama, Norma (Bacteriology Laboratory, Federico Gomez Children's Hospital of Mexico)
  • Received : 2011.05.23
  • Accepted : 2011.08.30
  • Published : 2011.12.28

Abstract

Vancomycin therapy failure due to the emergence of tolerance in pneumococci is increasing. The molecular mechanism of tolerance is not clear, but lytA and $pep^{27}$ are known to be involved. Our aim was to evaluate the expression of both genes in vancomycin-tolerant Streptococcus pneumoniae (VTSP) strains. Eleven VTSP strains from a total of 309 clinical isolates of S. pneumoniae from 1997 to 2006 were classified according to the criteria of Liu and Tomasz. All VTSP strains were evaluated for susceptibility according to CLSI criteria, serotype by the Quellung test, and clonality by PFGE. The expressions of lytA and $pep^{27}$ were analyzed in different growth phases by RT-PCR with and without vancomycin. Eighty-two percent of VTSP strains showed resistance to penicillin, and 100% were sensitive to vancomycin and cefotaxime. The most frequent serotypes of VTSP strains were 23F (4/11) and 6B (3/11). Clonal relationship was observed in only two strains. No significant changes were observed in $pep^{27}$ expression in the three phases of growth in VTSP strains with and without vancomycin. Interestingly, $pep^{27}$ expression in the stationary phase in the non-tolerant reference strain R6 was significantly higher. However, no significant differences in lytA expression were observed between VTSP and R6 strains during the phases of growth analyzed. The absence of changes in $pep^{27}$ expression in VTSP strains in the stationary phase may be related to their ability to tolerate high antibiotic concentrations, and thus, they survive and remain in the host under the antibiotic selective pressure reflected in therapeutic failure.

References

  1. Bourgeois, I., M. Pestel-Caron, J. F. Lemeland, J. L. Pons, and F. Caron. 2007. Tolerance to the glycopeptides vancomycin and teicoplanin in coagulase-negative staphylococci. Antimicrob. Agents Chemother. 51: 740-743. https://doi.org/10.1128/AAC.00719-06
  2. Fernebro, J., I. Andersson, J. Sublett, E. Morfeldt, R. Novak, E. Tuomanen, et al. 2004. Capsular expression in Streptococcus pneumoniae negatively affects spontaneous and antibioticinduced lysis and contributes to antibiotic tolerance. J. Infect. Dis. 189: 328-338. https://doi.org/10.1086/380564
  3. Gundian, G. P., P. J. Barreto, M. A. Rodriguez, R. A. Machado, E. Mora, and M. Lescay. 1998. Glicopeptidos. Acta Med. 8: 54-57.
  4. Haas, W., J. Sublett, D. Kaushal, and E. I. Tuomanen. 2004. Revising the role of the pneumococcal vex-vncRS locus in vancomycin tolerance. J. Bacteriol. 186: 8463-8471. https://doi.org/10.1128/JB.186.24.8463-8471.2004
  5. Henriques Normark, B., R. Novak, A. Ortqvist, G. Lallenius, E. Tuomanen, and S. Normark. 2001. Clinical isolates of Streptococcus pneumoniae that exhibit tolerance of vancomycin. Clin. Infect. Dis. 32: 552-558. https://doi.org/10.1086/318697
  6. Henriques Normark, B. and S. Normark. 2002. Antibiotic tolerance in pneumococci. Clin. Microbiol. Infect. 8: 613-622. https://doi.org/10.1046/j.1469-0691.2002.00477.x
  7. Jayaraman, R. 2008. Bacterial persistence: Some new insights into an old phenomenon. J. Biosci. 33: 795-805. https://doi.org/10.1007/s12038-008-0099-3
  8. Lanie, J. A., W. L. Ng, K. M. Kazmierczak, T. M. Andrzejewski, T. M. Davidsen, K. J. Wayne, et al. 2007. Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J. Bacteriol. 189: 38-51. https://doi.org/10.1128/JB.01148-06
  9. Li-Korotky, H. S., L. A. Kelly, O. Piltcher, P. A. Hebda, and W. J. Doyle. 2007. Evaluation of microbial RNA extractions from Streptococcus pneumoniae. J. Microbiol. Methods 68: 342-348. https://doi.org/10.1016/j.mimet.2006.07.014
  10. Liu, H. H. and A. Tomasz. 1985. Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J. Infect. Dis. 152: 365-372. https://doi.org/10.1093/infdis/152.2.365
  11. McCullers, J. A., B. K. English, and R. Novak. 2000. Isolation and characterization of vancomycin-tolerant Streptococcus pneumoniae from the cerebrospinal fluid of a patient who developed recrudescent meningitis. J. Infect. Dis. 181: 369- 373. https://doi.org/10.1086/315216
  12. McEllistrem, M. C., J. Stout, and L. H. Harrison. 2000. Simplified protocol for pulsed-field gel electrophoresis analysis of Streptococcus pneumoniae. J. Clin. Microbiol. 38: 351-353.
  13. Mitchell, L. and E. Tuomanen. 2001. Vancomycin-tolerant Streptococcus pneumoniae and its clinical significance. Pediatr. Infect. Dis. J. 20: 531-533. https://doi.org/10.1097/00006454-200105000-00012
  14. Novak, R., B. Henriques, E. Charpentier, S Normark, and E. Tuomanen. 1999. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 399: 590-593. https://doi.org/10.1038/21202
  15. Novak, R., E. Charpentier, J. S. Braun, and E Tuomanen. 2000. Signal transduction by a death signal peptide: Uncovering the mechanism of bacterial killing by penicillin. Mol. Cell 5: 49- 57. https://doi.org/10.1016/S1097-2765(00)80402-5
  16. Ortega, M., F. Marco, A. Soriano, E. García, J. A. Martínez, and J. Mensa. 2003. Lack of vancomycin tolerance in Streptococcus pneumoniae strains isolated in Barcelona, Spain, from 1999 to 2001. Antimicrob. Agents Chemother. 47: 1976- 1978. https://doi.org/10.1128/AAC.47.6.1976-1978.2003
  17. Obregon, V., P. Garcia, E. Garcia, A. Fenoll, R. Lopez, and J. L. Garcia. 2002. Molecular peculiarities of the lytA gene isolated from clinical pneumococcal strains that are bile insoluble. J. Clin. Microbiol. 40: 2545-2554. https://doi.org/10.1128/JCM.40.7.2545-2554.2002
  18. Word Health Organization. 2003. Pneumococcal vaccines. Wkly. Epidemiol. Rec. 78: 110-119.
  19. National Committee for Clinical Laboratory Standards. 2005. Performance Standards for Susceptibility Testing; Fifteenth Informational Supplement M100-S15. NCCLS, Wayne, PA.
  20. Rodriguez, C. A., R. Atkinson, W. Bitar, C. G. Whitney, K. M. Edwards, L. Mitchell, et al. 2004. Tolerance to vancomycin in pneumococci: Detection with a molecular marker and assessment of clinical impact. J. Infect. Dis. 190: 1481-1487. https://doi.org/10.1086/424467
  21. Rohlf, F. J. 1998. Numerical taxonomy and multivariate analysis system. Exeter Software Inc., New York, N.Y
  22. Sneath, P. H. A. and R. R. Sokal. 1973. Taxonomic structure, pp. 188-305. In: Numerical Taxonomy. W. H. Freeman & Co., San Francisco, CA.
  23. Sung, H., H. B. Shin, M. N. Kim, K. Lee, E. C. Kim, W. Song, et al. 2006. Vancomycin-tolerant Streptococcus pneumoniae in Korea. J. Clin. Microbiol. 44: 3524-3528. https://doi.org/10.1128/JCM.00558-06
  24. Villasenor-Sierra, A., M. Lomas-Bautista, S. Aguilar-Benavides, and G. Martinez-Aguilar. 2008. Serotypes and susceptibility of Streptococcus pneumoniae strains isolated from children in Mexico. Salud Pública Mex. 50: 330-333. https://doi.org/10.1590/S0036-36342008000400012