Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method

  • Yu, Jae-In (School of Materials Science and Engineering, Yeungnam University) ;
  • Choi, Soon-Don (School of Materials Science and Engineering, Yeungnam University) ;
  • Chang, Ho-Gyeong (Department of Oriental Biomedical Engineering, DaeguHanny University)
  • Received : 2010.09.30
  • Accepted : 2011.01.28
  • Published : 2011.07.01


The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.



  1. G.P. Kothiyal, S. Hong, N. Debbar, P.K. Bhattacharya, J. Singh, Appl. Phys. Lett. 51 (1987), p1091.
  2. D.J. Aren, K. Deneffe, C. Van Hoof, J. De Broeck, G. Borfhs, In band structure engineering of semiconductor microstructure, in: R.A. Abram, M. Jacos (Eds.), NATO ARW Series, vol. 189, Plenum, New York, 1988.
  3. S.H. Pan, H. Shen, Z. Hang, F.H. Pollak, A.P. Roth, D. Morris, Phys. Rev. B 38 (1988), p 3375.
  4. B.G. Orr, D. Kessler. C.W. Snyder, L. Sander, Europhys. Len. 19 (1992), p33.
  5. D. Leonard, K. Pond, P.M. Petroft, Phys. Rev. B 50 (1994), p11687.
  6. S.P. DenBaars, C.M. Reaves, V. Bressler-Hill, S. Varma, W.H. Weinberg, P.M. Petroff, J. Cryst. Growth 145(1994), p 721.
  7. R.L. Harper Jr., R.N. Bicknell, D.K. Blanks, N.C. Giles, J.F. Schetzina, Y.R. Lee, A.K. Ramdas, J. Appl. Phys. 65 (1989), p624.
  8. A. Poliment, A. Patane, M. Henini, L. Eaves, P.C. Main, Phys. Rev. B 59 (1999), p5064.
  9. A.E. Zhukov, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, V.M. Ustinov, M.V. Maximov, Z.I. Alferov, N.N. Ledentsov, D. Bimberg,Appl. Phys. Lett. 75 (1999), p1926.
  10. K.S. Stevens, M. Kinninburgh and R. Beresford, Appl. Phys. Lett. 66 (1995), p3518.
  11. J.M. Gerard, J.B. Genin, J. Lefebvre, J.M. Moison, N. Lebouche and F. Barthe, J. Cryst. Growth 150 (1995), p351.
  12. M. Zachau, P. Helgesen, F. Koch, D. Grutzmacher, R. Meyer and P. Balk, Sernicond. Sci. Technol. 3 (1988), p 1029.

Cited by

  1. SiGe Synthesis by Ge Ion Implantation vol.51, pp.9S2, 2012,