DOI QR코드

DOI QR Code

Effect of oxygen on the threshold voltage of a-IGZO TFT

  • Chong, Eu-Gene (Nanoelectronics, University of Science and Technology) ;
  • Chun, Yoon-Soo (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Kim, Seung-Han (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Lee, Sang-Yeol (Nanoelectronics, University of Science and Technology)
  • Received : 2010.05.14
  • Accepted : 2011.03.29
  • Published : 2011.07.01

Abstract

Thin-film transistors (TFTs) are fabricated using an amorphous indium gallium zinc oxide (a-IGZO) channel layer by rf-magnetron sputtering. Oxygen partial pressure significantly changed the transfer characteristics of a-IGZO TFTs. Measurements performed on a-IGZO TFT show the change of threshold voltage in the transistor channel layer and electrical properties with varying $O_2$ ratios. The device performance is significantly affected by adjusting the $O_2$ ratio. This ratio is closely related with the modulation generation by reducing the localized trapping carriers and defect centers at the interface or in the channel layer.

References

  1. E. G. Chong, K. C. Jo, S. Y. Lee, Appl. Phys. Lett. 96, (2010), 037015.
  2. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids, 352, (2006), 1749. https://doi.org/10.1016/j.jnoncrysol.2006.01.067
  3. R. Martins, et al, J. Appl. Phys. 96, (2004), 1398. https://doi.org/10.1063/1.1765864
  4. S. H. Jeong, B. N Park, D. G Yoo, J. H Boo, and D. G Jung, J. Korean Phys. Soc. 50, (2007), 3.
  5. K. W. Kim, P. C. Debnath, D. H. Park, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett. 96, (2010), 083103. https://doi.org/10.1063/1.3327826
  6. J. W. Kim, H. S. Kang, and S.Y. Lee, KIEE J. Electr. Eng. Technol. 1, (2006), 1, 98-100. https://doi.org/10.5370/JEET.2006.1.1.098
  7. B. S. Kim, D. E. Kim, G. C. Choi, J. W. Park, B. J. Lee and Y. S. Kwon, KIEE J. Electr. Eng. Technol. 4, (2009), 3, 418-422. https://doi.org/10.5370/JEET.2009.4.3.418
  8. E. Fortunato, A. Pimentel, A. Goncalves, A. Marques, R. Martins, Thin Solid Films. 502, (2006), 104. https://doi.org/10.1016/j.tsf.2005.07.311
  9. Y. K. Moon, S. Lee, J. W. Park, D. H. Kim, J. H. Lee and C. O Jeong, J. Korean Phys. Soc. 54, (2009), 1. https://doi.org/10.3938/jkps.54.1
  10. C. H. Jung, D. J. Kim, Y. K. Kang, and D. H. Yoon, Jpn. J. Appl. Phys. 48, (2009).
  11. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London). 432, (2004), 488. https://doi.org/10.1038/nature03090
  12. P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, J. Electrochemical Society. 156, (2009), H161. https://doi.org/10.1149/1.3049819
  13. J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G Mo, H. D. Kim, J. Song, and C. S. Hwang, Electrochemical and Solid State Lett. 11, (2008), H157. https://doi.org/10.1149/1.2903209
  14. H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, J. Non-Cryst. Solids. 354, (2008), 2796. https://doi.org/10.1016/j.jnoncrysol.2007.10.071
  15. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, (2008), 033513. https://doi.org/10.1063/1.2963978
  16. P. T. Liu, Y. T. Chou, and L. F. Teng, Appl. Phys. Lett. 95, 233504, 2009. https://doi.org/10.1063/1.3272016
  17. C. Kilic¸ and A. Zunger, Appl. Phys. Lett., 81, 73, 2002. https://doi.org/10.1063/1.1482783
  18. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012, 2000. https://doi.org/10.1103/PhysRevLett.85.1012
  19. C. J. Park, Y. W. Kim, Y. J. Cho, S. M. Bobade and D. K. Choi, J. Korean Phys Soc. 55, (2009), 5. https://doi.org/10.3938/jkps.55.5
  20. Y. Orikasa, M. Hayashi, and S. Muranaka, J. Appl. Phys. 103, (2008), 113703. https://doi.org/10.1063/1.2937939
  21. Ibrahim Abdel-Motaleb, Neeraj Shetty, Kevin Leedy, and Rebecca Cortez, J. Appl. Phys. 109 (2011) 014503. https://doi.org/10.1063/1.3525998
  22. B. Theys, V. Sallet, F. Jomard, A. Lusson, J.-F. Rommelue're, and Z. Teukam, J. Appl. Phys. 91, (2002), 3922. https://doi.org/10.1063/1.1452778
  23. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, (2002), 2869. https://doi.org/10.1063/1.1470703
  24. E. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid-State Lett., 14, (2011) H96. https://doi.org/10.1149/1.3518518

Cited by

  1. Full swing depletion-load inverter with amorphous SiZnSnO thin film transistors vol.214, pp.2, 2017, https://doi.org/10.1002/pssa.201600469
  2. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films vol.545, 2013, https://doi.org/10.1016/j.tsf.2013.07.084
  3. Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor vol.15, pp.6, 2014, https://doi.org/10.4313/TEEM.2014.15.6.328
  4. Effect of Sputtering Pressure on Surface Roughness, Oxygen Vacancy and Electrical Properties of a-IGZO Thin Films vol.45, pp.8, 2016, https://doi.org/10.1016/S1875-5372(16)30160-6
  5. Facile Encapsulation of Oxide based Thin Film Transistors by Atomic Layer Deposition based on Ozone vol.25, pp.20, 2013, https://doi.org/10.1002/adma.201300549
  6. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability vol.104, pp.25, 2014, https://doi.org/10.1063/1.4885362
  7. Temperature Effects on a-IGZO Thin Film Transistors Using HfO2Gate Dielectric Material vol.2014, 2014, https://doi.org/10.1155/2014/347858
  8. Efficient Defect Engineering for Solution Combustion Processed In-Zn-O thin films for high performance transistors vol.32, pp.9, 2017, https://doi.org/10.1088/1361-6641/aa7c72
  9. A study on the electrical and optical characteristics of IGZO films vol.25, pp.7, 2014, https://doi.org/10.1007/s10854-014-1986-z
  10. Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO thin films vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.050
  11. Investigation on the variation of channel resistance and contact resistance of SiZnSnO semiconductor depending on Si contents using transmission line method vol.139, 2018, https://doi.org/10.1016/j.sse.2017.09.015
  12. Effects of Working Pressure on the Physical Properties of a-InGaZnOxFilms Formed Using Inductively Coupled Plasma-Enhanced Reactive Sputtering Deposition vol.44, pp.12, 2016, https://doi.org/10.1109/TPS.2016.2593458
  13. Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions vol.16, pp.2, 2015, https://doi.org/10.4313/TEEM.2015.16.2.62
  14. Effect of Post Annealing in Oxygen Ambient on the Characteristics of Indium Gallium Zinc Oxide Thin Film Transistors vol.27, pp.10, 2014, https://doi.org/10.4313/JKEM.2014.27.10.648
  15. Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering vol.16, pp.2, 2015, https://doi.org/10.4313/TEEM.2015.16.2.99
  16. The effect of sputter growth conditions on the charge transport and stability of In-Ga-Zn-O semiconductors vol.638, 2017, https://doi.org/10.1016/j.tsf.2017.08.008
  17. Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2505
  18. Blue shift in the optical bandgap of tin oxide thin films by controlling oxygen-to-argon gas flow ratio vol.08, pp.01, 2015, https://doi.org/10.1142/S1793604715500149
  19. Effects of Substrate Temperature on Structural, Electrical and Optical Properties of Amorphous In-Ga-Zn-O Thin Films vol.1, pp.1, 2012, https://doi.org/10.1149/2.032201jss
  20. Study of Electronic Structure and Film Composition at the Back Channel Surface of Amorphous In-Ga-Zn-O Thin Films vol.2, pp.4, 2013, https://doi.org/10.1149/2.014304jss
  21. Effect of Nitrogen Doping on the Electrical Performance of Amorphous Si–In–Zn–O Thin Film Inverter pp.2092-7592, 2018, https://doi.org/10.1007/s42341-018-0082-0
  22. Effect of Oxygen Pressure on Electrical Property of a-SZTO Thin Film Transistor pp.2092-7592, 2018, https://doi.org/10.1007/s42341-018-0065-1
  23. Low-Temperature-Processed SiInZnO Thin-Film Transistor Fabricated by Radio Frequency Magnetron Sputtering vol.19, pp.3, 2018, https://doi.org/10.1007/s42341-018-0042-8
  24. treatment for indium zinc oxide thin film transistors with solution-based multiple active layer vol.57, pp.6S3, 2018, https://doi.org/10.7567/JJAP.57.06KB01
  25. Electrical, Structural, Optical, and Adhesive Characteristics of Aluminum-Doped Tin Oxide Thin Films for Transparent Flexible Thin-Film Transistor Applications vol.12, pp.1, 2019, https://doi.org/10.3390/ma12010137