DOI QR코드

DOI QR Code

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon (School of Electrical and Information Engineering, Wonkwang University) ;
  • Ju, Jin-Young (RIC NGIRT) ;
  • Kim, Cheol-Ho (School of Electrical and Information Engineering, Wonkwang University) ;
  • Shin, Yong-Deok (Fellow member of the KIEE, School of Electrical and Information Engineering, Wonkwang University)
  • Received : 2010.05.24
  • Accepted : 2011.03.08
  • Published : 2011.07.01

Abstract

Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

References

  1. I. Akin, M. Hotta, F. C. Sahin, O. Yucel, G. Goller, T. Goto, "Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering" Journal of the European Ceramic Society, 29, pp. 2379-2385, 2009. https://doi.org/10.1016/j.jeurceramsoc.2009.01.011
  2. J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, F. Monteverde, A. Bellosi, "Fabrication and properties of reactively hot-pressed $ZrB_2-SiC$ ceramics" Journal of the European Ceramic Society, 27, pp. 2279-2736, 2007.
  3. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "Reactive hot pressing of zirconium diboride" Journal of the European Ceramic Society, 29, pp. 3401-3408, 2009. https://doi.org/10.1016/j.jeurceramsoc.2009.07.006
  4. S.-Q. Guo, T. Nishimura, Y. Kagawa, J.-M. Yang, "Spark plasma sintering of zirconium diborides" J. Am. Ceram. Soc., 91[9], pp. 2848-2855, 2008. https://doi.org/10.1111/j.1551-2916.2008.02587.x
  5. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby, "High-strength zirconium diboridebased ceramics" J. Am. Ceram. Soc., 87[6], pp.1170-1172, 2004. https://doi.org/10.1111/j.1551-2916.2004.01170.x
  6. W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain, W. Zimmrmann, "Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics" J. Mater. Sci., 39[19], pp. 5951-5957, 2004. https://doi.org/10.1023/B:JMSC.0000041691.41116.bf
  7. F. Monteverde, A. Bellosi, "Oxidation of ZrB2-based ceramics in dry air" J. Electrochem. Soc., 150[11], B552-B559, 2003. https://doi.org/10.1149/1.1618226
  8. H. Hashiguchi, H. Kimugasa "Electrical resistivity of $\alpha$-SiC ceramics added with NiO" J. Ceram. Soc. Japan, 102[2], pp.160-64, 1994. https://doi.org/10.2109/jcersj.102.160
  9. Y. D. Shin, J. Y. Ju, T.H. Ko, J. H. Lee "Effect of in situ YAG on properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 57, no. 11, pp. 2015-2022, 2008.
  10. Y. D. Shin, J. Y. Ju, T. H. Ko, "Effects of in situ YAG on properties of the pressureless-sintered SiC-$TiB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 57, no. 5, pp. 808-815, 2008.
  11. Y. D. Shin, J. Y. Ju, "Effect of annealing temperature on microstructure and properties of the pressurelesssintered $SiC-TiB_2$ electroconductive ceramic composites" Trans. KIEE, vol. 55C, no. 10, pp. 467-474, 2006.
  12. Y. D. Shin, J. Y. Ju, T. H. Ko, "Effects of boride on microstructure and properties of the electroconductive ceramic composites of liquid-sintered silicon carbide system" Trans. KIEE, vol. 56C, no. 9, pp.1602-1608, 2007.
  13. J. Y. Ju, C. H. Kim, J. J. Kim, J. H. Lee, H. S. Lee, Y. D. Shin, "The development of an electroconductive $SiC-ZrB_2$ ceramic heater through spark plasma sintering" Journal of Electrical Engineering and Technology KIEE, vol. 4, no. 4, pp. 538-545, 2009. https://doi.org/10.5370/JEET.2009.4.4.538
  14. Y. D. Shin, W. S. Choi, T. H. Ko, J. H. Lee, J. Y. Ju, "Development of electroconductive SiC ceramic heater by spark plasma sintering" Trans. KIEE, vol. 58, no. 4, pp. 770-776, 2009.
  15. J. Y. Ju, H. S. Lee, S. M. Jo, J. H. Lee, C. H. Kim. J. H. Park, Y. D. Shin, "Properties of SiC-ZrB2 electroconductive ceramic composites by spark plasma sintering" Trans. KIEE, vol. 58, no. 9, pp. 1757-1763, 2009.
  16. Xiaoyan Song, w Xuemei Liu, J. Zhang, "Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering" J. Am. Ceram. Soc., 89[2], pp. 494-500, 2006. https://doi.org/10.1111/j.1551-2916.2005.00777.x
  17. Shu-Qi Guo, Toshiyuki Nishimura, Yutaka Kagawa, and Jenn-Ming Yang, "Spark plasma sintering of zirconium diborides" J. Am. Ceram. Soc., 91[9], pp. 2848-2855, 2008. https://doi.org/10.1111/j.1551-2916.2008.02587.x
  18. L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape" Philips Res. Repts., 13, pp. 1-9, 1958.
  19. A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas, "Oxidation of zirconium diboride-silicon carbide at 1500 ${^{\circ}C}$ at a low partial pressure of oxygen" J. Am. Ceram. Soc., 89[10], pp. 3240-3245, 2006. https://doi.org/10.1111/j.1551-2916.2006.01229.x
  20. W. G. Fahrenholtz, "Thermodynamic analysis of $ZrB_2-SiC$ oxidation: Formation of SiC-depleted region," J. Am. Ceram. Soc., 90[1], pp. 143-148, 2007. https://doi.org/10.1111/j.1551-2916.2006.01329.x
  21. J. B. Hurst, S. Dutta, "Simple processing method for high-strength silicon carbide" J. Am. Ceram. Soc., 70[11]. pp. C303-308, 1987.
  22. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "High-strength zirconium diboride-based ceramics" J. Am. Ceram. Soc., 87[6], pp. 1170-1172, 2004. https://doi.org/10.1111/j.1551-2916.2004.01170.x
  23. M. Nader, F. Aldinger, M. J. Hoffmann, "Influence of the ${\alpha}/{\beta}$ phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide" J. Mat. Sci., 34, pp. 1197-1204, 1999. https://doi.org/10.1023/A:1004552704872
  24. Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, "Effect of initial $\alpha$-phase content on microstructure and mechanical properties of sintered Silicon carbide" J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998. https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  25. Y. W. Kim, M. Mitomo, H. Hirotsuru, "Microstructure development of silicon carbide containing large seed grains" J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997. https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  26. W. Wang, Z. Fu, H. Wang, R. Yuan, "Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of $TiB_2$ ceramics" Journal of the European Ceramic Society, 22, pp. 1045-1049, 2002. https://doi.org/10.1016/S0955-2219(01)00424-1
  27. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, "Re-active hot pressing of zirconium diboride", Journal of the European Ceramic Society, 29, pp. 3401-3408, 2009. https://doi.org/10.1016/j.jeurceramsoc.2009.07.006
  28. A. Kondo, "Electrical conduction mechanism in recrystallized SiC" Journal of the Ceramic Society of Japan, Int. Edition, vol. 100, pp. 1204-1208, 1993.
  29. R. Landauer, "The electrical resistance of binary metallic mixtures" RNAL of Applied Physics, vol. 23, no. 7, pp. 779-784, 1952. https://doi.org/10.1063/1.1702301
  30. Y. D. Shin, J. Y. Ju, J. S. Kwon, "Electrical conductive mechanism of hot-pressed $\alpha-SiC-ZrB_2$ composites" Trans. KIEE, Vol. 48C, No. 2, pp. 104-108, 1999.

Cited by

  1. Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2Composites vol.8, pp.6, 2013, https://doi.org/10.5370/JEET.2013.8.6.1474
  2. Sintering properties of zirconia-based ceramic composite vol.18, pp.sup6, 2014, https://doi.org/10.1179/1432891714Z.000000000939
  3. A Study on Sintering Properties of a SiC-ZrB2Composite According to Mold Size of SPS Through Computer Simulation vol.61, pp.7, 2012, https://doi.org/10.5370/KIEE.2012.61.7.988
  4. Mechanical property of porous Ti implants by sintering method vol.34, pp.3, 2012, https://doi.org/10.14347/kadt.2012.34.3.221