DOI QR코드

DOI QR Code

Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid

Camostat 및 분해산물 4-(4-guanidinobenzoyloxy)phenylacetic acid의 전자분무 이온화 텐덤 질량 fragmentation 패턴

  • Kwon, Soon-Ho (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories) ;
  • Shin, Hye-Jin (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories) ;
  • Park, Ji-Myeong (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories) ;
  • Lee, Kyoung-Ryul (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories) ;
  • Kim, Young-Jin (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories) ;
  • Lee, Sang-Hoo (Department of Bioanalysis, Seoul Medical Science Institute & Seoul Clinical Laboratories)
  • 권순호 ((재)서울의과학연구소 질량분석부) ;
  • 신혜진 ((재)서울의과학연구소 질량분석부) ;
  • 박지명 ((재)서울의과학연구소 질량분석부) ;
  • 이경률 ((재)서울의과학연구소 질량분석부) ;
  • 김영진 ((재)서울의과학연구소 질량분석부) ;
  • 이상후 ((재)서울의과학연구소 질량분석부)
  • Received : 2010.10.01
  • Accepted : 2011.03.03
  • Published : 2011.04.25

Abstract

The fragmentation patterns of a serine protease inhibitor, camostat, and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA), were for the first time investigated by a triple quadrupole tandem mass spectrometry equipped with an electrospray source (ESI-MS/MS) in positive and/or negative ion mode under collision-induced dissociation (CID). The positive CID spectrum of camostat showed distinctly that the single bond (C-O) cleavage between carbonyl group and oxygen atom of the ester bonds of the compound favorably occurred and then the loss of N,N-dimethylcarbamoylmethyl group was more susceptible than that of guanidine moiety. In the positive ion CID spectrum of GBPA, the initial cleavage between the carbonyl group and oxygen atom of 4-guanidinobenzoyloxy group also occurred, yielding the most abundant fragment ion at m/z 145. On the other hand, the negative CID spectrum of GBPA characteristically showed the occurrence of the most abundant peak at m/z 226 resulting from the sequential neutral losses of $CO_2$ and HN=C=NH from the parent ion at m/z 312.

Keywords

camostat;4-(4-guanidinobenzoyloxy)phenylacetic acid;serine protease inhibitor;ESI-MS/MS;CID

References

  1. Y. Tamura, M. Hirado, K. Okamura, Y. Minato and S. Fujii, Biochim. Biophys. Acta, 484(2), 417-422(1977). https://doi.org/10.1016/0005-2744(77)90097-3
  2. N. Tanaka, R. Tsuchiya and K. Ishii, Adv. Exp. Med. Biol., 120B, 367-378(1979).
  3. S. Takasugi, H. Yonezawa, N. Ikei and T. Kanno, Digestion, 24(1), 36-41(1982). https://doi.org/10.1159/000198772
  4. M. Kanoh, H. Ibata, M. Miyagawa and Y. Matsuo, Biomed. Res., 10(suppl 1), 145-150(1989).
  5. M. Kitagawa, S. Naruse, H. Ishiguro and T. Hayakawa, Pancreas, 16(3), 427-431(1998). https://doi.org/10.1097/00006676-199804000-00035
  6. M. Sugiyama, Y. Atomi, N. Wada, A. Kuroda and T. Muto, J. Gastroenterol., 32(3), 374-379(1997). https://doi.org/10.1007/BF02934496
  7. I. Sasaki, Y. Suzuki, H. Naito, Y. Funayama, Y. Kamiyama, M. Takahashi, T. Matsuo, K. Fukushima, S. Matsuno and T. Sato, Biomed. Res., 10(suppl 1), 167-173(1989).
  8. I. Kobayashi, S. Ohwada, T. Ohya, T. Yokomori, H. Iesato and Y. Morishita, Hepatogastroenterology, 45(20), 558-562(1998).
  9. H. Sarles, Scan. J. Gastroenterol., 6(3), 193-198(1971). https://doi.org/10.3109/00365527109180692
  10. H. Sarles, Dig. Dis. Sci., 30(6), 573-574(1985). https://doi.org/10.1007/BF01320265
  11. M. Okuno, K. Akita, H. Moriwaki, N. Kawada, K. Ikeda, K. Kaneda, Y. Suzuki and S. Kojima, Gastroenterology, 120(7), 1784-1800(2001). https://doi.org/10.1053/gast.2001.24832
  12. J. Gibo, T. Ito, K. Kawabe, T. Hisano, M. Inoue, N. Fujimori, T. Oono, Y. Arita and H. Nawata, Lab. Invest., 85(1), 75-89(2005). https://doi.org/10.1038/labinvest.3700203
  13. K. Beckh, B. Goke, R. Muller and R. Arnold, Res. Exp. Med. (Berlin), 187(6), 401-406(1987). https://doi.org/10.1007/BF01852177
  14. T. Nishihata, Y. Saitoh and K. Sakai, Chem. Pharm. Bull. (Tokyo), 36(7), 2544-2550(1988). https://doi.org/10.1248/cpb.36.2544
  15. I. Midgley, A. J. Hood, P. Proctor, L. F. Chasseaud, S. R. Irons, K. N. Cheng, C. J. Brindley and R. Bonn, Xenobiotica, 24(1), 79-92(1994). https://doi.org/10.3109/00498259409043223
  16. X. Wang, Y. Sha, Z. Ge, W. Wang and R. Li. Rapid Commun. Mass Spectrom., 25, 349-354(2011). https://doi.org/10.1002/rcm.4847
  17. M. Hubert-Roux, F. Bounoure, M. Skiba, P. Bozec, F. Churlaud and C. M. Lange. J. Mass Spectrom., 45, 1121-1129(2010). https://doi.org/10.1002/jms.1790
  18. M. Marull and B. Rochat. J. Mass Spectrom., 41, 390-404(2006). https://doi.org/10.1002/jms.1002
  19. M.-Y. Zhang, N. Pace, E. H. Kerns, T. Kleintop, N. Kagan and T. Sakuma. J. Mass Spectrom., 40, 1017-1029(2005). https://doi.org/10.1002/jms.876
  20. X. Wang, Y. Sha and R. Li. Int. J. Mass Spectrom., 235, 111-115(2004). https://doi.org/10.1016/j.ijms.2004.03.012
  21. Z. Tozuka, H. Kaneko, T. Shiraga, Y. Mitani, M. Beppu, S. Terashita, A. Kawamura and A. Kagayama. J. Mass Spectrom., 38, 793-808(2003). https://doi.org/10.1002/jms.511
  22. H. Wang, Y. Wu and Z. Zhao. J. Mass Spectrom., 36, 58-70(2001). https://doi.org/10.1002/jms.104
  23. S. Kwon, W. Lee, H. Shin, S. Yoon, Y. Kim, Y. Kim, K. Lee and S. Lee. J. Mol. Struct., 938, 192-197(2009). https://doi.org/10.1016/j.molstruc.2009.09.025
  24. M. W. Forbes, R. A. Jockusch, A. B. Young and A. G. Harrison. J. Am. Soc. Mass Spectrom., 18, 1959-1966 (2007). https://doi.org/10.1016/j.jasms.2007.08.003
  25. P. M. Gehrig, P. E. Hunziker, S. Zahariev and S. pongor. J. Am. Soc. Mass Spectrom., 15, 142-149(2004). https://doi.org/10.1016/j.jasms.2003.10.002