DOI QR코드

DOI QR Code

Spectrofluorimetric determination of EDTA with Cu(II)-tiron chelate

Cu(II)-tiron 킬레이트를 이용한 EDTA 분광형광법 정량

  • Received : 2011.04.04
  • Accepted : 2011.05.12
  • Published : 2011.06.25

Abstract

A spectrofluorimetric method for the determination of EDTA in real samples such as mayonnaise, powder detergent and cleansing cream with tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) as a fluorimetric reporter was developed. When tiron is chelated with Cu(II), the fluorescent intensity is decreased by a quenching effect. However, when Cu(II)-tiron chelate reacts with EDTA, fluorescent intensity is increased as tiron is released. Several experimental conditions such as pH of the sample solution, the amount of Cu(II), the amount of tiron, heating temperature and heating time were optimized. Fe(III) interfered more seriously than any other ions, interference of Fe(III) could be disregarded, because Fe(III) was scarcely contained in selected real samples. The linear range of EDTA was from $8.0{\times}106{-8}\;M$ to $2.0{\times}10^{-6}\;M$. With this proposed method, the detection limit of Fe(III) was $5.2{\times}10^{-8}\;M$. Recovery yields of 92.7~99.3% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of EDTA.

Keywords

EDTA determination;tiron;Cu(II);spectrofluorimetry

References

  1. L. Katata, V. Nagaraju and A. M. Crouch, Anal. Chim. Acta, 579, 177-184 (2006). https://doi.org/10.1016/j.aca.2006.07.024
  2. A. A. Krokidis, M. C. Megoulas and M. A. Koupparis, Anal. Chim. Acta, 535, 57-63 (2005). https://doi.org/10.1016/j.aca.2004.12.011
  3. R. Parkash, R. Bansal, S. K. Rehani and S. Dixit, Talanta, 46, 1573-1576 (1998). https://doi.org/10.1016/S0039-9140(98)00041-1
  4. A. M. G. Campaa, F. A. Barrero and M. R. Ceba, Anal. Chim. Acta, 329, 319-325 (1996). https://doi.org/10.1016/0003-2670(96)00180-8
  5. J. B. Quintana and T. Reemtsma, J. Chromatogr. A, 1145, 110-117 (2007). https://doi.org/10.1016/j.chroma.2007.01.044
  6. H. Lee, T. E. Peart and K. L. E. Kaiser, J. Chromatogr, A, 738, 91-99 (1996).
  7. C. E. Cagnasso, L. B. Lopez, V. G. Todriguez and M. E. Valencia, J. Food. Compos. Anal., 20, 248-251 (2007). https://doi.org/10.1016/j.jfca.2006.05.008
  8. K. Gl, M. Hugl, S. Demirci-eki and R. Apak, Talanta, 53, 213-222 (2000). https://doi.org/10.1016/S0039-9140(00)00455-0
  9. F. Belal, F. A. Aly, M. I. Walash and A. O. Mesbah, J. Pharm. Biomed. Anal., 17, 1249-1256 (1998). https://doi.org/10.1016/S0731-7085(98)00039-9
  10. M. Grabarezyk, Electrochim. Acta, 51, 2333-2337 (2006). https://doi.org/10.1016/j.electacta.2005.02.154
  11. C. Zhao, Y. Pan, Y. Su, Z. Zhang, Z. Guo and L. Sun, Water Res., 37, 4270-4274 (2003). https://doi.org/10.1016/S0043-1354(03)00352-X
  12. H. Kim and H. Choi, Talanta, 55, 163-169 (2001). https://doi.org/10.1016/S0039-9140(01)00405-2
  13. J. A. Dean, "Lange's Handbook of Chemistry", 15th Ed., 8.93 McGraw-Hill, U.S.A., 1999.
  14. T. I. Tikhomirova, S. S. Kubyshev, A. V. Ivanov and P. N. Nesterenko, Russ. J. Phys. Chem. A, 83, 1208-1211 (2009). https://doi.org/10.1134/S0036024409070280
  15. D. C. Harris, "Quantitative Chemical Analysis", 7th Ed., 60, W. H. Freeman, U.S.A., 2007.