DOI QR코드

DOI QR Code

ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE WITH $PH_2$-RETRIAL TIMES

  • Shin, Yang-Woo (Department of Statistics, Changwon National University)
  • 투고 : 2010.12.03
  • 심사 : 2011.02.10
  • 발행 : 2011.05.30

초록

We present an algorithmic solution for the stationary distribution of the M/M/c retrial queue in which the retrial times of each customer in orbit are of phase type distribution of order 2. The system is modeled by the level dependent quasi-birth-and-death (LDQBD) process.

과제정보

연구 과제 주관 기관 : Changwon National University

참고문헌

  1. A. S. Alfa and W. Li, PCS networks with correlated arrival process and retrial phenome- non, IEEE Transactions on Wireless Communications 1 (2002), 630-637. https://doi.org/10.1109/TWC.2002.804077
  2. J. R. Artalejo and A. Gomez-Corral, Modelling communication systems with phase type service and retrial times, IEEE Communications Letters 11 (2007), 955-957.
  3. J. R. Artalejo and A. Gomez-Corral, Retrial Queueing Systems, A Computational Approach, Springer-Verlag, Hidelberg, 2008.
  4. L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes, Stochastic Models 11 (1995), 497-525. https://doi.org/10.1080/15326349508807357
  5. J. E. Diamond and A. S. Alfa, Approximation method for M=PH=1 retrial queues with phase type inter-retrial times, European Journal of Operational Research 113 (1999), 620-631. https://doi.org/10.1016/S0377-2217(98)00004-6
  6. G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
  7. A. Gomez-Corral, A bibliographical guide to the analysis of retrial queues through the matrix analytic techniques, Annals of Operations Research 141 (2006), 163-191. https://doi.org/10.1007/s10479-006-5298-4
  8. Q. M. He and Y. Q. Zhao, Ergodicity of the BM AP/PH/s/s + K retrial queue with PH-retrial times, Queueing Systems 35 (2000), 323-347. https://doi.org/10.1023/A:1019110631467
  9. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
  10. H. M. Liang and V. G. Kulkarni, Monotonicity properties of single server retrial queues, Stochastic Models 9 (1993), 373-400. https://doi.org/10.1080/15326349308807271
  11. Y. W. Shin, Fundamental matrix of transient QBD generator with finite states and level dependent transitions, Asia-Pacific Journal of Operational Research 26 (2009), 697-714. https://doi.org/10.1142/S0217595909002407
  12. W. Whitt, Approximating a point process by a renewal process, I: two basic methods, Operations Research 30 (1982), 125 - 147. https://doi.org/10.1287/opre.30.1.125
  13. T. Yang, M. J. M. Posner, J. G. C. Templeton and H. Li, An approximation method for the M/G/1 retrial queues with general retrial times, European Journal of Operational Research 76 (1994), 552-562. https://doi.org/10.1016/0377-2217(94)90286-0