DOI QR코드

DOI QR Code

SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS

Chen, Huanyin

  • 투고 : 2009.12.08
  • 발행 : 2011.07.31

초록

An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 2${\times}$2 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.

키워드

$2{\times}2$ matrix;strongly nil cleanness;local ring

참고문헌

  1. G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020
  2. H. Chen, Separative ideals, clean elements and unit-regularity, Comm. Algebra 34 (2006), no. 3, 911-921. https://doi.org/10.1080/00927870500441825
  3. H. Chen, Clean matrices over commutative rings, Czechoslovak Math. J. 59(134) (2009), no. 1, 145-158. https://doi.org/10.1007/s10587-009-0010-x
  4. H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2011), no. 10, 3790-3804.
  5. W. Chen, A question on strongly clean rings, Comm. Algebra 34 (2006), no. 7, 2347-2350. https://doi.org/10.1080/00927870600550202
  6. A. J. Diesl, Classes of Strongly Clean Rings, Ph D. Thesis, University of California, Berkeley, 2006.
  7. J. E. Humphreys, Introduction to Lie Algebra and Representation Theory, Springer-Verlag, Beijing, 2006.
  8. W. K. Nicholson, Clean rings: a survey, Advances in ring theory, 181-198, World Sci. Publ., Hackensack, NJ, 2005.
  9. X. Yang and Y. Zhou, Some families of strongly clean rings, Linear Algebra Appl. 425 (2007), no. 1, 119-129. https://doi.org/10.1016/j.laa.2007.03.012
  10. X. Yang and Y. Zhou, Strongly cleanness of the $2\times2$ matrix ring over a general local ring, J. Algebra 320 (2008), no. 6, 2280-2290. https://doi.org/10.1016/j.jalgebra.2008.06.012

피인용 문헌

  1. Quasipolar Subrings of 3 x 3 Matrix Rings vol.21, pp.3, 2013, https://doi.org/10.2478/auom-2013-0048
  2. Nil clean rings vol.383, 2013, https://doi.org/10.1016/j.jalgebra.2013.02.020
  3. Nil-quasipolar rings vol.20, pp.1, 2014, https://doi.org/10.1007/s40590-014-0005-y