DOI QR코드

DOI QR Code

STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN PROPER CQ*-ALGEBRAS

  • Lee, Jung-Rye (Department of Mathematics Daejin University) ;
  • Park, Choon-Kil (Department of Mathematics Research Institute for Natural Sciences Hanyang University) ;
  • Shin, Dong-Yun (Department of Mathematics University of Seoul)
  • Received : 2010.01.18
  • Published : 2011.07.31

Abstract

In this paper, we prove the Hyers-Ulam-Rassias stability of the following additive functional inequality: ${\parallel}f(2x)+f(2y)+2f(z){\parallel}\;{\leq}\;{\parallel}2f(x+y+z){\parallel}$ We investigate homomorphisms in proper $CQ^*$-algebras and derivations on proper $CQ^*$-algebras associated with the additive functional inequality (0.1).

References

  1. J. P. Antoine, A. Inoue, and C. Trapani, $O^\ast$-dynamical systems and $\ast$-derivations of unbounded operator algebras, Math. Nachr. 204 (1999), 5-28. https://doi.org/10.1002/mana.19992040102
  2. J. P. Antoine, A. Inoue, and C. Trapani, Partial $\ast$-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.
  3. F. Bagarello, Applications of topological $\ast$-algebras of unbounded operators, J. Math. Phys. 39 (1998), no. 11, 6091-6105. https://doi.org/10.1063/1.532615
  4. F. Bagarello, A. Inoue, and C. Trapani, Some classes of topological quasi $\ast$-algebras, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2973-2980. https://doi.org/10.1090/S0002-9939-01-06019-1
  5. F. Bagarello, A. Inoue, and C. Trapani, Derivations of quasi $\ast$-algebras, Int. J. Math. Math. Sci. 2004 (2004), no. 21-24, 1077-1096. https://doi.org/10.1155/S0161171204307155
  6. F. Bagarello, A. Inoue, and C. Trapani, Exponentiating derivations of quasi $\ast$-algebras: possible approaches and applications, Int. J. Math. Math. Sci. 2005 (2005), no. 17, 2805-2820. https://doi.org/10.1155/IJMMS.2005.2805
  7. F. Bagarello and C. Trapani, States and representations of $CQ^\ast$-algebras, Ann. Inst. H. Poincare Phys. Theor. 61 (1994), no. 1, 103-133.
  8. F. Bagarello and C. Trapani, $CQ^\ast$-algebras: structure properties, Publ. Res. Inst. Math. Sci. 32 (1996), no. 1, 85-116. https://doi.org/10.2977/prims/1195163181
  9. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002.
  10. S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003.
  11. Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
  12. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
  13. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  14. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  15. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
  16. C. Park, Lie $\ast$-homomorphisms between Lie $C^\ast$-algebras and Lie $\ast$-derivations on Lie $C^\ast$-algebras, J. Math. Anal. Appl. 293 (2004), no. 2, 419-434. https://doi.org/10.1016/j.jmaa.2003.10.051
  17. C. Park, Homomorphisms between Lie $JC^\ast$-algebras and Cauchy-Rassias stability of Lie $JC^\ast$-algebra derivations, J. Lie Theory 15 (2005), no. 2, 393-414.
  18. C. Park, Isomorphisms between unital $C^\ast$-algebras, J. Math. Anal. Appl. 307 (2005), no. 2, 753-762. https://doi.org/10.1016/j.jmaa.2005.01.059
  19. C. Park, Approximate homomorphisms on $JB^\ast$-triples, J. Math. Anal. Appl. 306 (2005), no. 1, 375-381. https://doi.org/10.1016/j.jmaa.2004.12.043
  20. C. Park, Isomorphisms between $C^\ast$-ternary algebras, J. Math. Phys. 47 (2006), no. 10, 103512, 12 pp. https://doi.org/10.1063/1.2359576
  21. C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between $C^\ast$-algebras, Math. Nachr. 281 (2008), no. 3, 402-411. https://doi.org/10.1002/mana.200510611
  22. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  23. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445-446.
  24. J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
  25. J. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  26. J. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
  27. J. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378. https://doi.org/10.1006/jmaa.2000.6788
  28. J. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. https://doi.org/10.1006/jmaa.2000.7046
  29. J. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572
  30. J. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
  31. Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), no. 2, 325-338. https://doi.org/10.1006/jmaa.1993.1070
  32. F. Skof, Proprieta localie approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  33. C. Trapani, Quasi-$\ast$-algebras of operators and their applications, Rev. Math. Phys. 7 (1995), no. 8, 1303-1332. https://doi.org/10.1142/S0129055X95000475
  34. C. Trapani, Some seminorms on quasi-$\ast$-algebras, Studia Math. 158 (2003), no. 2, 99-115. https://doi.org/10.4064/sm158-2-1
  35. C. Trapani, Bounded elements and spectrum in Banach quasi $\ast$-algebras, Studia Math. 172 (2006), no. 3, 249-273. https://doi.org/10.4064/sm172-3-4
  36. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

Cited by

  1. STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES vol.29, pp.1, 2016, https://doi.org/10.14403/jcms.2016.29.1.103
  2. ON THE HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.671
  3. ON THE STABILITY OF A GENERAL ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.907