DOI QR코드

DOI QR Code

Organic-Inorganic Hybrid Materials Technology for Gas Barrier

가스 차단을 위한 유.무기 하이브리드 소재기술

  • Received : 2011.05.12
  • Accepted : 2011.05.24
  • Published : 2011.06.30

Abstract

Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

Acknowledgement

Supported by : 중소기업청

References

  1. 이준우, 박창걸, 박영서, "High functional packing materials", 한국과학기술정보연구원 (2003).
  2. D. D. J. Rousseaux, M. Sclavons, P. Godard, and J. Marchand- Brynaert, "Carboxylate clays: A model study for polypropylene/clay nanocomposites", Polym. Degrad. Stab., 95, 1194 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.04.006
  3. D. D. J. Rousseaux, N. Sallem-Idrissi, A. C. Baudouin, J. Devaux, P. Godard, J. Marchand-Brynaert, and M. Sclavons, "Water-assisted extrusion of polypropylene/clay nanocomposites: A comprehensive study?", Polymer, 52, 443 (2011). https://doi.org/10.1016/j.polymer.2010.11.027
  4. S. J. Park, D. I. Seo, and J. R. Lee, "Surface modification of montmorillonite on surface acid?base characteristics of clay and thermal stability of epoxy/clay nanocomposites", J. Colloid Interface Sci., 251, 160 (2002). https://doi.org/10.1006/jcis.2002.8379
  5. F. L. Jin, K. Y. Rhee, and S. J. Park, "Surface treatment of montmorillonite on the thermal stabilities of bisphenol-A diglycidyl dimethacrylate nanocomposites", Mater. Sci. Eng. A, 435, 429 (2006).
  6. S. Cimmino, D. Duraccio, C. Silvestre, and M. Pezzuto, "Isotactic polypropylene modified with clay and hydrocarbon resins: compatibility, structure and morphology in dependence on crystallization conditions", Appl. Surf. Sci., 256, 40 (2009). https://doi.org/10.1016/j.apsusc.2009.04.119
  7. D. Majumdar, T. N. Blanton, and D. W. Schwark, "Clay-polymer nanocomposite coatings for imaging application", Appl. Clay Sci. 23, 265 (2003). https://doi.org/10.1016/S0169-1317(03)00126-1
  8. E. Picard, E. Espuche, and R. Fulchiron, "Effect of an organo- modified montmorillonite on PLA crystallization and gas barrier properties", Appl. Clay Sci., 53, 58 (2011). https://doi.org/10.1016/j.clay.2011.04.023
  9. S. J. Park and J. S. Jin, "Effect of corona discharge treatment on the dyeability of low-density polyethylene film", J. Colloid Interface Sci., 236, 155 (2001). https://doi.org/10.1006/jcis.2000.7380
  10. F. Tihminlioglu, I. Atik, and B. Ozen, "Water vapor and oxygen-barrier performance of corn-zein coated polypropylene films", J. Food Eng., 96, 342 (2010). https://doi.org/10.1016/j.jfoodeng.2009.08.018
  11. T. Cecchi, P. Passamonti, and P. Cecchi, "Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger", Food Chem., 120, 730 (2010). https://doi.org/10.1016/j.foodchem.2009.11.001
  12. H. M. C. de Azeredo, "Nanocomposites for food packaging applications", Food Res. Int., 42, 1240 (2009). https://doi.org/10.1016/j.foodres.2009.03.019
  13. M. G. Carneiro-da-Cunha, M. A. Cerqueira, B. W. S. Souza, S. Carvalho, M. A. C. Quintas, J.e A. Teixeira, and A. A. Vicente, "Physical and thermal properties of a chitosan/alginate nanolayered PET film", Carbohydrate Polym., 82, 153 (2010). https://doi.org/10.1016/j.carbpol.2010.04.043
  14. R. Shogren, "Water vapor permeability of biodegradable polymers". J, Environ, Polym. Degrad., 5, 1997 (1997).
  15. W. S. Jang, I. Rawson, and J. C. Grunlan, "Layer-by-layer assembly of thin film oxygen barrier". Thin Solid Films, 516, 4819 (2008). https://doi.org/10.1016/j.tsf.2007.08.141
  16. 김기수, PET 보틀 성형가공과 가스 배리어화의 최근 기술 동향, 한국과학기술정보연구원 (2004).
  17. Z. Ke, B. Yongping. "Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization", Mater. Lett., 59, 3348 (2005). https://doi.org/10.1016/j.matlet.2005.05.070
  18. Y. Liang, W. Cao, Z. Lia, Y. Wang, Y. Wu, and L. Zhang, "A new strategy to improve the gas barrier property of isobutylene- isoprene rubber/clay nanocomposites", Polym. Testing, 27, 270 (2008). https://doi.org/10.1016/j.polymertesting.2007.11.003
  19. P. B. Messersmith and E. P. Giannelis, "Synthesis and barrier properties of poly($\varepsilon$-caprolactone) layered silicate nanocomposites", J. Polym. Sci., Part A: Polym. Chem., 33, 1047 (1995).