Pain Nursing Intervention Supporting Method using Collaborative Filtering in Health Industry

보건산업에서 협력적 필터링을 이용한 통증 간호중재 지원 방법

  • 류현 (상지대학교 교육대학원 컴퓨터교육학과) ;
  • 조선문 (배재대학교 IT) ;
  • 정경용 (상지대학교 컴퓨터정보공학부)
  • Received : 2011.04.22
  • Accepted : 2011.05.18
  • Published : 2011.07.28


In modern society, the amount of information has been significantly increased according to the development of Internet and IT convergence technology and that leads to develop information obtaining and searching technologies from lots of data. Although the system integration for medicare has been largely established and that accumulates large amounts of information, there is a lack of providing and supporting information for nursing activities using such established database. In particular, the judgement for the intervention of pains depends on the experience of individual nurses and that leads to make subjective decisions in usual. In this paper, a pain nursing supporting method that uses the existing medical data and performs collaborative filtering is proposed. The proposed collaborative filtering is a method that extracts some items, which represent a high relativeness level, based on similar preferences. A preference estimation method using a user based collaborative filtering method calculates user similarities through Pearson correlation coefficients in which a neighbor selection method is used based on the user preference.


Collaborative Filtering;Pain Nursing;Nursing Support;Default Voting


Supported by : 상지대학교


  1. J. Manning and E. A. McConnell, "Technology assessment. A framework for generating questions useful in evaluating nursing information systems," Comput Nurs., Vol.15, No.3, pp.141-146, 1997.
  2. International Association for the Study of Pain, "Pain terms: A Current List of the Definitions and Notes on Usage," J. of Pain, pp.216-221, 1986.
  3. S. A. Brekken and V. JD. Sheets, "Pain management: A Regulatory issue," J. of Nursing Administration Quarterly, Vol.32, No.4, pp.288-295, 2008.
  4. 김진현, 이영희, 양봉민, "전국 의료기관의 수술 후 통증 관리 실태 분석," 대한마취과학회지, Vol.55, No.4, pp.458-466, 2008.
  5. 정귀임, 박정숙, 김혜옥, 윤매옥, 문미영, "암환자 통증관리에 대한 의료인의 지식에 관한 조사연구", 임상간호연구, Vol. 10, No.1, pp.111-124, 2004.
  6. 보건복지부, "암성통증관리지침 권고안," 보건복지부, 2003.
  7. 장영준, "척추수술 환자의 수술 후 통증 변화와 통증 조절 중재에 대한 만족도," 전북대학교 석사학위논문, 2004.
  8. D. Billsus and M. J. Pazzani, "Learning Collaborative Information Filters," Proceedings of ICML, pp.46-53, 1998.
  9. Y. F. Wang, Y. L. Chuang, M. H. Hsu, and H. C. Keh, "A Personalized Recommender System for the Cosmetic Business," Expert Systems with Applications, Vol.26, No.3, pp.427-434, 2004.
  10. 이준규, "인터넷 개인화 아이템 추천 알고리즘에 대한 연구," 연세대학교 석사학위논문, 2000.
  11. 최순희, 조복희, 지혜련, 이운주, 김혜숙, 박민정, 표준화된 간호진단, 중재 및 결과 분류, 정문각, 2004.
  12. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.230-237, 1999.
  13. 박인숙, 장미, 유순애, 김희진, 오필주, 정희정, "일개 대학병원 내과 병동 입원환자의 전자의무기 록에 사용된 통증간호 기록 분석", 임상간호연구, Vol.16, No.3, pp.128, 2010.
  14. 류현, "협력적 필터링 기법을 이용한 통증 간호 중재 지원 시스템", 상지대학교 교육대학원 컴퓨터교육학과, 석사학위논문, 2011(8).

Cited by

  1. Decision supporting method for chronic disease patients based on mining frequent pattern tree vol.74, pp.20, 2015,
  2. Interactive pain nursing intervention system for smart health service vol.74, pp.7, 2015,
  3. Depression Index Service Using Knowledge Based Crowdsourcing in Smart Health vol.93, pp.1, 2017,