DOI QR코드

DOI QR Code

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

Chung, Jae-Young

  • 투고 : 2011.01.31
  • 심사 : 2011.02.28
  • 발행 : 2011.03.25

초록

Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

키워드

quadratic functional equation;stability;locally integrable functions;heat kernel;almost everywhere sense

참고문헌

  1. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86. https://doi.org/10.1007/BF02192660
  2. J. Chung, Stability of a generalized quadratic functional equation in Schwartz distributions, Acta Mathematica Sinica, English Series, Vol. 25(2009), 1459-1468. https://doi.org/10.1007/s10114-009-8254-9
  3. J. Chung, Distributional method for a class of functiuonal equations and their stabilities, Acta Math. Sinica 23(2007), 2017-2026. https://doi.org/10.1007/s10114-007-0977-x
  4. J. Chung, Stability of approximately quadratic Schwartz distributions, Nonlinear Analysis 67(2007), 175-186. https://doi.org/10.1016/j.na.2006.05.005
  5. D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  6. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, 1998.
  7. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129. https://doi.org/10.1007/BF02924890
  8. S. M. Ulam, Problems in modern mathematics, Chapter VI, Wiley, New York, 1964.