DOI QR코드

DOI QR Code

HIGHER ORDER GENOCCHI, EULER POLYNOMIALS ASSOCIATED WITH q-BERNSTEIN TYPE POLYNOMIALS

  • Arac, Serkan (Department of Mathematics, Faculty of Science and Arts, University of Gaziantep) ;
  • Erdal, Dilek (Department of Mathematics, Faculty of Science and Arts, University of Gaziantep)
  • Received : 2011.03.06
  • Accepted : 2011.03.22
  • Published : 2011.06.25

Abstract

The main aim of this paper is to give some relationships between q-Bernstein, higher order genocchi and Euler polynomials.

Keywords

Generating function;Higher order Euler polynomials;Higher order Genocchi polynomials;Mellin transformation;Zeta function;q-Bernstein polynomials

References

  1. M. Acikgoz, and Y. Simsek, A New generating function of q-Bernstein type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12 pages, doi: 10.1155/2010/769095.01-313. https://doi.org/10.1155/2010/769095.01-313
  2. M. Acikgoz, S. Araci, and I. N.Cangul, A Note on the modified q-Bernstein polynomials for functions of several variables and their reflections on q-Volkenborn integration, Applied Mathematics and Computation(in press)
  3. M. Acikgoz, and S. Araci, On the generating function of Bernstein polynomials, in proceedings of the 8th International conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP, Rhodes, Greece, March 2010.
  4. L. C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15(1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  5. I. N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. 19 (2009), 39-57
  6. J. Choi, D. S. Jang and H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19 (2008), 65-79. https://doi.org/10.1080/10652460701528909
  7. J. Choi and H. M. Srivastava, The multiple Hurwitz Zeta function and the multiple Hurwitz-Euler Eta function, Taiwanese J. Math. 15 (2011), in press
  8. V. Kac, P. Cheung, Quantum Calculus. Springer, 128 , 2001.
  9. T. Kim, A New Approach to q-Zeta Function, Adv. Stud. Contemp. Math. 11 (2) 157-162.
  10. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  11. T. Kim, On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT] https://doi.org/10.1134/S1061920808040055
  12. T. Kim, A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8. https://doi.org/10.1155/2007/71452
  13. C-S. Ryoo, T. Kim, B. Lee, and J. Choi, On the generalized q-Genocchi numbers and polynomials of higher order, Advances in Difference Equations, Volume 2011, Article ID 424809, 8page, doi: 10.1155/2011/424809 https://doi.org/10.1155/2011/424809
  14. T. Kim, On a p-adic interpolation function for the q-extension of the generalized Bernoulli polynomials and its derivative, Discrete Mathematics, 309(6) (2009), 1593-1602. https://doi.org/10.1016/j.disc.2008.03.001
  15. T. Kim, On p-adic q-l-functions and sums of powers, Journal of Mathematical Analysis and Applications, 329(2) (2007), 1472-1481. https://doi.org/10.1016/j.jmaa.2006.07.071
  16. T. Kim, On p-adic q-L-functions and sums of powers, Discrete Mathematics, 252 (2002),179-187. https://doi.org/10.1016/S0012-365X(01)00293-X
  17. T. Kim, On a q-Analogue of thep-Adic Log Gamma Functions and Related Integrals, Journal of Number Theory, 76(2) (1999), 320-329. https://doi.org/10.1006/jnth.1999.2373
  18. Q.-M. Luo, q-Extensions for the Apostol-Genocchi Polynomials, General Mathematics, 17(2) (2009), 113-125
  19. Q.-M. Luo, Apostol-Euler Polynomials of Higher Order and Gaussian Hypergeometric Functions, Taiwanse Journal of Mathematics, 10 (4) (2006), 917-925. https://doi.org/10.11650/twjm/1500403883