DOI QR코드

DOI QR Code

Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석

Lee, Hyo-Jung;Kim, Peol-A;Park, Mi-Ra
이효정;김별아;박미라

  • Received : 20110400
  • Accepted : 20110600
  • Published : 2011.08.31

Abstract

A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.

Keywords

Time-course microarray data;pharmacokinetic parameter;clustering

References

  1. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O. and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast, Science, 282, 699-705. https://doi.org/10.1126/science.282.5389.699
  2. Hoon, D., Imoto, S. and Miyano, S. (2002). Statistical analysis of a small set of time-ordered gene expression data using linear splines, Bioinformatics, 18, 1477-1485. https://doi.org/10.1093/bioinformatics/18.11.1477
  3. Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of the Classification, 2, 193-218. https://doi.org/10.1007/BF01908075
  4. Lobenhofer, E. K., Bennett, L., Cable, P. L., Li, L., Bushel, P. R. and Afshari, C. A. (2002). Regulation of dna replication fork genes by 17beta-estradiol, Molecular Endocrinology, 16, 1215-1229. https://doi.org/10.1210/me.16.6.1215
  5. Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines, Bioinformatics, 19, 474-482. https://doi.org/10.1093/bioinformatics/btg014
  6. Peddada, S. D., Lobenhofer, E. K., Li, L., Afshari, C. A., Weinberg, C. R. and Umbach, D. M. (2003). Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference, Bioinformatics, 19, 834-841. https://doi.org/10.1093/bioinformatics/btg093
  7. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850. https://doi.org/10.2307/2284239
  8. Schliep, A., Schonhuth, A. and Steinhoff, C. (2003). Using hidden Markov models to analyze gene expression time course data, Bioinformatics Supplement, 19, i255-263. https://doi.org/10.1093/bioinformatics/btg1036
  9. Song, J. J., Lee, H. J., Morris, J. S. and Kang, S. (2007). Clustering of time-course gene expression data using functional data analysis, Computational Biology and Chemistry, 31, 265-274. https://doi.org/10.1016/j.compbiolchem.2007.05.006
  10. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the Cell, 12, 3273-3297.
  11. Tibshirani, R. J., Hastie, T. J., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, 99, 6567-6572. https://doi.org/10.1073/pnas.082099299
  12. Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Raftery, W. L. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987. https://doi.org/10.1093/bioinformatics/17.10.977
  13. Yi, S.-G, Joo, Y.-J. and Park, T. (2009). Rank-based clustering analysis for the time-course microarray data, Journal of Bioinformatics and Computational Biology, 7, 75-91. https://doi.org/10.1142/S0219720009004035

Acknowledgement

Supported by : 한국연구재단