Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석

Lee, Hyo-Jung;Kim, Peol-A;Park, Mi-Ra

  • Received : 20110400
  • Accepted : 20110600
  • Published : 2011.08.31


A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.


Time-course microarray data;pharmacokinetic parameter;clustering


  1. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O. and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast, Science, 282, 699-705.
  2. Hoon, D., Imoto, S. and Miyano, S. (2002). Statistical analysis of a small set of time-ordered gene expression data using linear splines, Bioinformatics, 18, 1477-1485.
  3. Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of the Classification, 2, 193-218.
  4. Lobenhofer, E. K., Bennett, L., Cable, P. L., Li, L., Bushel, P. R. and Afshari, C. A. (2002). Regulation of dna replication fork genes by 17beta-estradiol, Molecular Endocrinology, 16, 1215-1229.
  5. Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines, Bioinformatics, 19, 474-482.
  6. Peddada, S. D., Lobenhofer, E. K., Li, L., Afshari, C. A., Weinberg, C. R. and Umbach, D. M. (2003). Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference, Bioinformatics, 19, 834-841.
  7. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850.
  8. Schliep, A., Schonhuth, A. and Steinhoff, C. (2003). Using hidden Markov models to analyze gene expression time course data, Bioinformatics Supplement, 19, i255-263.
  9. Song, J. J., Lee, H. J., Morris, J. S. and Kang, S. (2007). Clustering of time-course gene expression data using functional data analysis, Computational Biology and Chemistry, 31, 265-274.
  10. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the Cell, 12, 3273-3297.
  11. Tibshirani, R. J., Hastie, T. J., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, 99, 6567-6572.
  12. Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Raftery, W. L. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987.
  13. Yi, S.-G, Joo, Y.-J. and Park, T. (2009). Rank-based clustering analysis for the time-course microarray data, Journal of Bioinformatics and Computational Biology, 7, 75-91.


Supported by : 한국연구재단