A Customer Profile Model for Collaborative Recommendation in e-Commerce

전자상거래에서의 협업 추천을 위한 고객 프로필 모델

  • 이석기 (한양대학교 정보시스템학과) ;
  • 조현 (한국과학기술원 경영대학) ;
  • 천성용 (단국대학교 경영학부)
  • Received : 2011.04.01
  • Accepted : 2011.04.26
  • Published : 2011.05.28


Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.


Collaborative Filtering;Lexicographic Consensus;Recommender System


  1. F. Liu and H. J. Lee, "Use of social network information to enhance collaborative filtering performance," Expert Systems with Applications, Vol.37, pp.4772-4778, 2010.
  2. W. D. Cook, "Optimal allocation of proposals to reviewers to facilitate effective ranking," Management Science, Vol.51, No.4, pp.655-661, 2005.
  3. C. Wang and W. A. Wulf, "Towards a framework for security measurement," in: Proc. of National Information Systems Security Conference pp.522-533, 1997.
  4. S. K. Lee, S. H. Kim, and Y. H. Cho, "Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations," Information Sciences, Vol.180, No.11, pp.2142-2155, 2009.
  5. 박종학, 조윤호, 김재경, "사회연결망: 신규고객 추천문제의 새로운 접근법", 지능정보연구, 제15권, 제1호, pp.123-139, 2009.
  6. 김귀정, 김봉한, 한정수, "복합지식 기반 개인 맞춤형 지능화 추천 시스템", 한국콘텐츠학회논문지, 제10권, 제8호, pp.26-31, 2010.
  7. 여운동, 박현우, 권영일, 박영욱, "연구논문 추천 시스템의 전자도서관 적용방안", 한국콘텐츠학회논문지, 제10권, 제11호, pp.10-19, 2010.
  8. 정귀임, 박상성, 신영근, 장동식, "역전파 신경망을 이요한 개인 맞춤형 상품 추천 시스템 구축", 한국콘텐츠학회논문지, 제7권, 제12호, pp.292-302, 2007.
  9. T. Kamishima, "Nantonac collaborative filtering: recommendation based on order response," in: Proc. of the Ninth International Conference on Knowledge Discovery and Data Mining, pp.583-588, 2003.
  10. T. Joachims, "Optimizing search engine using click through data," in: Proc. of the Eighth International Conference on Knowledge Discovery and Data Mining, pp.133-142, 2002.
  11. C. Y. Kim, J. K. Lee, Y. H. Cho, and D. H. Kim, "VISCORS: a visual-content recommender for the mobile Web," IEEE Intelligent Systems Vol.19, No.3, pp.32-38, 2004.
  12. Y. H.Cho and J. K. Kim, "Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce," Expert Systems with Applications, Vol.26, No.2, pp.236-246, 2004.
  13. M. Condorcet, "Essai sur L'Application de L'Analyse a la Probabilite des Decisions Rendues," a La Pluralite des Voix, Paris, 1785.
  14. J. Borda, "Memoire sur les elections au scrutin," Histoire de l'academie royale de science, Paris, 1981.