DOI QR코드

DOI QR Code

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102

  • Quan, Lin-Hu (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Piao, Jin-Ying (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Min, Jin-Woo (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Ho-Bin (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Sang-Rae (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Dong-Uk (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2011.01.14
  • Accepted : 2011.06.20
  • Published : 2011.09.25

Abstract

Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

References

  1. Boo YJ, Park JM, Kim J, Suh SO. Prospective study for Korean red ginseng extract as an immune modulator following a curative surgery in patients with advanced colon cancer. J Ginseng Res 2007;31:54-59. https://doi.org/10.5142/JGR.2007.31.1.054
  2. Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J, Beltz GA, Newman GW, Newman MJ. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol 1992;148:1519-1525.
  3. Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fa-tigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 1983;3:89-94.
  4. Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside $Rb_{1}$ in the rat. Chem Pharm Bull (Tokyo) 1983;31:1059-1066. https://doi.org/10.1248/cpb.31.1059
  5. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside $Rb_{1}$ by intestinal bacteria, in rat plasma after oral administration- -measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-249. https://doi.org/10.1248/bpb.21.245
  6. Karikura M, Miyase T, Tanizawa H, Takino Y, Taniyama T, Hayashi T. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside $Rb_{2}$ in the large intestine of rats. Chem Pharm Bull (Tokyo) 1990;38:2859-2861. https://doi.org/10.1248/cpb.38.2859
  7. Paek IB, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, Kim JB, Lee HS. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos 2006;27:39-45. https://doi.org/10.1002/bdd.481
  8. Hasegawa H, Uchiyama M. Antimetastatic efficacy of orally administered ginsenoside $Rb_{1}$ in dependence on intestinal bacterial hydrolyzing potential and significance of treatment with an active bacterial metabolite. Planta Med 1998;64:696-700. https://doi.org/10.1055/s-2006-957560
  9. Lee BH, Lee SJ, Hur JH, Lee S, Sung JH, Huh JD, Moon CK. In vitro antigenotoxic activity of novel ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1998;64:500-503. https://doi.org/10.1055/s-2006-957501
  10. Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246:725-730. https://doi.org/10.1006/bbrc.1998.8690
  11. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 2002;25:743-747. https://doi.org/10.1248/bpb.25.743
  12. Oh SH, Lee BH. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage. Toxicol Appl Pharmacol 2004;194:221-229. https://doi.org/10.1016/j.taap.2003.09.011
  13. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-1704. https://doi.org/10.1021/np990152b
  14. Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 1983;3:89-94.
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser 1999;41:95-98.
  16. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-1599. https://doi.org/10.1093/molbev/msm092
  17. Shibata S, Tanaka O, Soma K, Ando T, Iida Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;42:207-213.
  18. Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from Kimchi. J Ginseng Res 2010;34:288-295. https://doi.org/10.5142/jgr.2010.34.4.288
  19. Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside $Rb_{1}$ by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339-344. https://doi.org/10.1023/A:1022320824000
  20. Kim SD, Seu JH. Enzymatic properties of the convertible enzyme of ginseng saponin produced from Rhizopus japonicus. Korean J Appl Microbiol Bioeng 1989;17:126- 130.
  21. Zhang D, Liu Y, Yu H, Jin F, Chen G. Purification of ginsenoside $\beta$-glucosidase hydrolase and ITS characteristics. Chin J Appl Environ Biol 2003;9:259-262.
  22. Sano K, Amemura A, Harada T. Purification and properties of a beta-1,6-clucosidase from Flavobacterium. Biochim Biophys Acta 1975;377:410-420. https://doi.org/10.1016/0005-2744(75)90321-6
  23. Yoshioka H, Hayashida S. Purification and properties of $\beta$-glucosidase from Humicola insolens YH-8. Agric. Biol Chem 1980;44:1729-1735. https://doi.org/10.1271/bbb1961.44.1729
  24. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside $Rb_{1}$-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 2001;65:1163-1169. https://doi.org/10.1271/bbb.65.1163
  25. Shin JE, Park EK, Kim EJ, Hong YH, Lee KT, Kim DH. Cytotoxicity of compound K (IH-901) and ginsenoside $Rh_{2}$, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. J Ginseng Res 2003;27:129-134. https://doi.org/10.5142/JGR.2003.27.3.129
  26. Chi H, Ji GE. Transformation of ginsenosides $Rb_{1}$ and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-771. https://doi.org/10.1007/s10529-005-5632-y
  27. Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. Conversion of major ginsenoside $Rb_{1}$ to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 2006;28:1121-1127. https://doi.org/10.1007/s10529-006-9059-x
  28. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside $Rb_{1}$ to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 2007;17:1937- 1943.

Cited by

  1. Whole cell biotransformation of major ginsenosides using Leuconostocs and Lactobacilli vol.21, pp.3, 2012, https://doi.org/10.1007/s10068-012-0108-z
  2. vol.60, pp.14, 2012, https://doi.org/10.1021/jf300186a
  3. Bioconversion of ginsenoside Rc into Rd by a novel α-l-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization vol.103, pp.4, 2013, https://doi.org/10.1007/s10482-012-9856-2
  4. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII vol.36, pp.6, 2014, https://doi.org/10.1007/s10529-014-1472-y
  5. HJ-014 vol.42, pp.3, 2014, https://doi.org/10.5941/MYCO.2014.42.3.256
  6. Highly Selective Bioconversion of Ginsenoside Rb1 to Compound K by the Mycelium of Cordyceps sinensis under Optimized Conditions vol.20, pp.10, 2015, https://doi.org/10.3390/molecules201019291
  7. Paenibacillus puernese sp. nov., a β-glucosidase-producing bacterium isolated from Pu’er tea vol.198, pp.3, 2016, https://doi.org/10.1007/s00203-015-1180-6
  8. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083942
  9. vol.64, pp.12, 2016, https://doi.org/10.1021/acs.jafc.5b04098
  10. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field vol.66, pp.8, 2016, https://doi.org/10.1099/ijsem.0.001069
  11. Compound K derived from ginseng: neuroprotection and cognitive improvement vol.7, pp.11, 2016, https://doi.org/10.1039/C6FO01077F
  12. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach vol.82, pp.6, 2016, https://doi.org/10.1111/bcp.13080
  13. Study on Transformation of Ginsenosides in Different Methods vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/8601027
  14. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products vol.26, pp.5, 2017, https://doi.org/10.1007/s10068-017-0159-2
  15. Enzymatic Transformation from Protopanaxadiol Ginsenoside Rb1 into Rare Ginsenoside C-K and its Anti-Cancer Activity vol.641-642, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.641-642.752
  16. KCCM 12010P isolated from kimchi vol.53, pp.5, 2018, https://doi.org/10.1111/ijfs.13713
  17. vol.68, pp.2, 2019, https://doi.org/10.1111/lam.13090