Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation

측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선

  • Received : 2011.04.26
  • Accepted : 2011.06.21
  • Published : 2011.07.31


In order to improve the quality of strain images in medical ultrasound imaging, displacements need to be accurately estimated. In this paper, in order to apply one-dimensional displacement estimation methods to two-dimensional motion estimation, the axial and lateral displacements are separately estimated. In order to estimate lateral displacements, one-dimensional signals aligned in the lateral direction are converted to analytic signals, which are then crosscorrelated. Strain images are produced by first compensating two-dimensional displacements for lateral motion with lateral motion displacement estimates obtained from the proposed lateral displacement estimation algorithm and then estimating axial displacements. Both phantom and human data experiments show that the proposed method provides better signal-to-noise ratio and contrast-to-noise ratio characteristics than a conventional strain imaging method that utilizes axial displacement estimates only.


  1. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imag., vol. 20 pp. 260-274, 1998.
  2. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissues - A review," Ultrasound Med. Biol., vol. 22, no. 8, pp. 959-977, 1996.
  3. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imag., vol. 13, no. 2, pp. 111-134, 1991.
  4. T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Ultrason., vol. 29, pp. 119-128, 2002.
  5. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A time efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 5, pp. 1057-1067, 1999.
  6. M. O'Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, "Internal displacement and strain imaging using ultrasonic speckle tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 41, no. 3, pp. 314-325, 1994.
  7. J. A. Jensen and P. Munk, "A new method for estimation of velocity vectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 837-851, May 1998.
  8. X. Chen, M. J. Zohdy, S. Y. Emelianov, and M. O'Donnell, "Lateral speckle tracking using synthetic lateral phase," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 5, pp. 540-550, May 2004.
  9. R. Zahiri-Azar and S. E. Salcudean, "Real-time estimation of lateral displacement using time domain cross correlation with prior estimates," in Proc. IEEE Ultrason. Symp., 2006, pp. 1209-1212.
  10. H. Hasegawa and H. Kanai "Phase-sensitive lateral motion estimator for measurement of artery-wall displacement - Phantom study," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 11, pp. 2450-2462, Nov. 2009.
  11. D. K. Ahn and M. K. Jeong, "Ultrasound phantom based on plastic material for elastography," J. Kor. Soc. Nondestructive Testing, vol. 29, no. 4, pp. 368-373, 2009.
  12. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust. Soc. Kor., vol. 27, no. 3E, pp. 84-94, 2008.
  13. M. K. Jeong, S. J. Kwon, and M. H. Bae, "Real-time implementation of medical ultrasound strain imaging system," J. Kor. Soc. Nondestructive Testing, vol. 28, no. 2, pp. 101-111, 2008.
  14. I. Cespedes and J. Ophir, "Reduction of image noise in elastography," Ultrason. Imag., vol. 15, pp. 89-102. 1993.
  15. M. Bilgen and M. F. Insana, "Predicting target detectability in acoustic elastography," in Proc. IEEE Ultrason. Symp., 1997, pp. 1427-1430.

Cited by

  1. Medical Ultrasonic Elasticity Imaging Techniques vol.32, pp.5, 2012,