Stress, Inflammation and Neurogenesis in Major Depression

주요우울증에서 스트레스, 염증반응, 신경조직발생

  • Kim, Yong-Ku (Department of Psychiatry, College of Medicine, Korea University)
  • 김용구 (고려대학교 의과대학 정신과학교실)
  • Received : 2011.08.07
  • Accepted : 2011.10.28
  • Published : 2011.11.30

Abstract

Stress, a risk factor of major depression induces cytokine mediated inflammation and decreased neurogenesis. In patients with major depression, significant increases of pro-inflammatory cytokines have been consistently reported. The pro-inflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release glucocorticoids. In the brain, microglia and play a role of immune activation in response to stress. Increased pro-inflammatory cytokine play a role in restricting neurogenesis in the brain. Although neurogenesis may not be essential for the development of depression, it may be required for clinically effective antidepressant treatment. Hence, stimulation of neurogenesis is regarded as a promising strategy for new antidepressant targets. This review introduces changes in neurotransmitter, cytokine and neurogenesis in major depression and explores the possible relationship between pro-inflammatory cytokines and neurogenesis related to stress in major depression.

References

  1. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001;49:1023-1039. https://doi.org/10.1016/S0006-3223(01)01157-X
  2. Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders Biol Psychiatry 1999;46:1509-1522. https://doi.org/10.1016/S0006-3223(99)00224-3
  3. Schildkraut JJ. The catecholamine hypothesis of affective disorders:a review of supporting evidence. Am J Psychiatry 1965;122:509-522.
  4. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997;54:597-606. https://doi.org/10.1001/archpsyc.1997.01830190015002
  5. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO & NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 2008;29: 287-291.
  6. Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:767-780. https://doi.org/10.1016/S0278-5846(01)00155-5
  7. Leonard BE. The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 2005;20 Suppl 3:S302- S306.
  8. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463-475. https://doi.org/10.1038/nrn1683
  9. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003;301:386-389. https://doi.org/10.1126/science.1083968
  10. Castren E. Is mood chemistry? Nat Rev Neurosci 2005;6:241-246.
  11. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2007;10:1116-1124. https://doi.org/10.1038/nn1944
  12. Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4:141-194. https://doi.org/10.1016/j.arr.2005.03.003
  13. Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 2001;178:200-206. https://doi.org/10.1192/bjp.178.3.200
  14. Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 2000;48:791-800. https://doi.org/10.1016/S0006-3223(00)00994-X
  15. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100:1387-1392. https://doi.org/10.1073/pnas.0337481100
  16. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000;57:925-935. https://doi.org/10.1001/archpsyc.57.10.925
  17. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004;56:640-650. https://doi.org/10.1016/j.biopsych.2004.08.022
  18. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 2001;158:453-468. https://doi.org/10.1016/S0002-9440(10)63988-0
  19. Czeh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 2007;257:250-260. https://doi.org/10.1007/s00406-007-0728-0
  20. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313-1317. https://doi.org/10.1038/3305
  21. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435: 406-417. https://doi.org/10.1002/cne.1040
  22. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386: 493-495. https://doi.org/10.1038/386493a0
  23. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999;286:548-552. https://doi.org/10.1126/science.286.5439.548
  24. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998;95:3168-3171. https://doi.org/10.1073/pnas.95.6.3168
  25. Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci 1999;2:894-897. https://doi.org/10.1038/13197
  26. Muller N. [Role of the cytokine network in the CNS and psychiatric disorders]. Nervenarzt 1997;68:11-20. https://doi.org/10.1007/s001150050092
  27. Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999;4:317-327. https://doi.org/10.1038/sj.mp.4000586
  28. Maes M, Smith R, Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995;20:111-116. https://doi.org/10.1016/0306-4530(94)00066-J
  29. Connor TJ, Leonard BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998; 62:583-606. https://doi.org/10.1016/S0024-3205(97)00990-9
  30. Kim YK, Suh IB, Kim H, Han CS, Lim CS, Choi SH, et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry 2002; 7:1107-1114. https://doi.org/10.1038/sj.mp.4001084
  31. Pollak Y, Yirmiya R. Cytokine-induced changes in mood and behaviour: implications for 'depression due to a general medical condition', immunotherapy and antidepressive treatment. Int J Neuropsychopharmacol 2002;5:389-399. https://doi.org/10.1017/S1461145702003152
  32. Smith RS. The macrophage theory of depression. Med Hypotheses 1991;35:298-306. https://doi.org/10.1016/0306-9877(91)90272-Z
  33. Maes M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999;461:25-46.
  34. Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003;61:519-525 https://doi.org/10.1016/S0306-9877(03)00207-X
  35. Meyers CA. Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv Exp Med Biol 1999;461:75-81.
  36. Dantzer R, Aubert A, Bluthe RM, Gheusi G, Cremona S, Laye S, et al. Mechanisms of the behavioural effects of cytokines. Adv Exp Med Biol 1999;461:83-105.
  37. Leonard BE. Changes in the immune system in depression and dementia: causal or co-incidental effects? Int J Dev Neurosci 2001;19: 305-312. https://doi.org/10.1016/S0736-5748(01)00014-4
  38. Kim YK, Lee SW, Kim SH, Shim SH, Han SW, Choi SH, et al. Differences in cytokines between non-suicidal patients and suicidal patients in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:356-361. https://doi.org/10.1016/j.pnpbp.2007.08.041
  39. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:1044-1053. https://doi.org/10.1016/j.pnpbp.2007.03.004
  40. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 2005; 88:167-173. https://doi.org/10.1016/j.jad.2005.07.008
  41. Lee KM, Kim YK. The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 2006; 6:1298-1304. https://doi.org/10.1016/j.intimp.2006.03.015
  42. Leonard BE. HPA and immune axes in stress: involvement of the serotonergic system. Neuroimmunomodulation 2006;13:268-276. https://doi.org/10.1159/000104854
  43. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987;238:522-524. https://doi.org/10.1126/science.2821621
  44. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H. Corticotropin- releasing factor-producing neurons in the rat activated by interleukin-1. Science 1987;238:524-526. https://doi.org/10.1126/science.2443979
  45. Maes M, Scharpé S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 1993;49:11-27. https://doi.org/10.1016/0165-1781(93)90027-E
  46. Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, et al. IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res 2001;21:1097-1101. https://doi.org/10.1089/107999001317205231
  47. Sakash JB, Byrne GI, Lichtman A, Libby P. Cytokines induce indoleamine 2,3-dioxygenase expression in human atheroma-asociated cells: implications for persistent Chlamydophila pneumoniae infection. Infect Immun 2002;70:3959-3961. https://doi.org/10.1128/IAI.70.7.3959-3961.2002
  48. Neveu PJ, Castanon N. Is there evidence for an effect of antidepressant drugs on immune function? Adv Exp Med Biol 1999;461:267- 281.
  49. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 1999;20:370-379. https://doi.org/10.1016/S0893-133X(98)00088-8
  50. Xia Z, DePierre JW, Nassberger L. Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 1996;34:27-37. https://doi.org/10.1016/0162-3109(96)00111-7
  51. Suzuki E, Shintani F, Kanba S, Asai M, Nakaki T. Induction of interleukin- 1 beta and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics in widespread area of rat brain. Neurosci Lett 1996;215:201-204. https://doi.org/10.1016/0304-3940(96)12985-2
  52. Nabriski D, Saperstein A, Brand H, Jain R, Zwickler D, Hutchinson B, et al. Role of corticotropin-releasing factor in immunosuppression. Trans Assoc Am Physicians 1991;104:238-247.
  53. Miller AH, Pariante CM, Pearce BD. Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Adv Exp Med Biol 1999;461:107-116.
  54. Kim YK, Maes M. The role of cytokine network in psychological stress. Acta Neuropsychiatrica 2003;15:148-155. https://doi.org/10.1034/j.1601-5215.2003.00026.x
  55. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021- 1029. https://doi.org/10.1016/j.neuroscience.2008.06.052
  56. Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, et al. Suppression of cell proliferation by interferon-alpha through interleukin- 1 production in adult rat dentate gyrus. Neuropsychopharmacology 2006;31:2619-2626. https://doi.org/10.1038/sj.npp.1301137
  57. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006;26:9703-9712. https://doi.org/10.1523/JNEUROSCI.2723-06.2006
  58. Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 2008;105:751-756. https://doi.org/10.1073/pnas.0708092105
  59. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302:1760-1765. https://doi.org/10.1126/science.1088417
  60. Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry 2004;56:140-145. https://doi.org/10.1016/j.biopsych.2004.02.033
  61. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104-9110.
  62. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001;98: 12796-12801. https://doi.org/10.1073/pnas.211427898
  63. Oomen CA, Mayer JL, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci 2007;26:3395-3401. https://doi.org/10.1111/j.1460-9568.2007.05972.x
  64. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805-809. https://doi.org/10.1126/science.1083328
  65. Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16:239-249. https://doi.org/10.1002/hipo.20156
  66. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci 2007;10:1110-1115. https://doi.org/10.1038/nn1969
  67. Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 2008;21:290-295. https://doi.org/10.1097/YCO.0b013e3282fad375
  68. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009;14:959-967. https://doi.org/10.1038/mp.2009.15
  69. Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? Genes Brain Behav 2008;7 Suppl 1:28-42.
  70. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 2006;11:514-522. https://doi.org/10.1038/sj.mp.4001791
  71. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009;34:2376- 2389. https://doi.org/10.1038/npp.2009.75
  72. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008;64:293-301. https://doi.org/10.1016/j.biopsych.2008.02.022
  73. Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 2009; 66:2985-3008. https://doi.org/10.1007/s00018-009-0055-x
  74. Thase ME. The clinical, psychosocial, and pharmacoeconomic ramifications of remission. Am J Manag Care 2001;7:S377-S385.
  75. Duman RS. Synaptic plasticity and mood disorders. Mol Psychiatry 2002;7 Supp 1:S29-S34.
  76. Pollak DD, Monje FJ, Zuckerman L, Denny CA, Drew MR, Kandel ER. An animal model of a behavioral intervention for depression. Neuron 2008;60:149-161. https://doi.org/10.1016/j.neuron.2008.07.041
  77. Czeh B, Pudovkina O, van der Hart MG, Simon M, Heilbronner U, Michaelis T, et al. Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression. Psychopharmacology (Berl) 2005;180:548-557. https://doi.org/10.1007/s00213-005-2184-8
  78. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008;108:132-138. https://doi.org/10.3171/JNS/2008/108/01/0132
  79. Revesz D, Tjernstrom M, Ben-Menachem E, Thorlin T. Effects of vagus nerve stimulation on rat hippocampal progenitor proliferation. Exp Neurol 2008;214:259-265. https://doi.org/10.1016/j.expneurol.2008.08.012
  80. Maier SF, Watkins LR. Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Res 1995;695:279-282. https://doi.org/10.1016/0006-8993(95)00930-O
  81. Mansbach RS, Brooks EN, Chen YL. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997;323:21-26. https://doi.org/10.1016/S0014-2999(97)00025-3
  82. Myint AM, Steinbusch HW, Goeghegan L, Luchtman D, Kim YK, Leonard BE. Effect of the COX-2 inhibitor celecoxib on behavioural and immune changes in an olfactory bulbectomised rat model of depression. Neuroimmunomodulation 2007;14:65-71. https://doi.org/10.1159/000107420
  83. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein- Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006;11:680-684. https://doi.org/10.1038/sj.mp.4001805
  84. Bauer J, Hohagen F, Gimmel E, Bruns F, Lis S, Krieger S, et al. Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol Psychiatry 1995;38:611-621. https://doi.org/10.1016/0006-3223(95)00374-X