DOI QR코드

DOI QR Code

Relationship between PAHs Concentrations in Ambient Air and Deposited on Pine Needles

  • Chun, Man-Young (Department of Environmental Engineering, Hankyung National University)
  • Received : 2010.11.29
  • Accepted : 2010.12.31
  • Published : 2011.01.01

Abstract

Objectives: This study was carried out to determine whether or not pine needles can be used as passive samplers of atmospheric polycyclic aromatic hydrocarbons (PAHs) using the correlation between accumulated PAH concentrations in air (Ca, ng/$m^3$) and those deposited on pine needles (Cp, ng/g dry). Methods: PAHs in ambient air was collected using low volume PUF sampler and pine needles was gathered at same place for 7 months. Results: A good correlation ($R^2$=0.8582, p<0.05) was found between Ca and Cp for PAHs with a higher gaseous state in air (AcPy, Acp, Flu, Phen, Ant, Flt, Pyr, BaA and Chry), but there was a poorer correlation ($R^2$=0.1491, p=0.5123) for the PAHs with a lower gaseous state (BbF, BkF, BaP, DahA, BghiP and Ind123). A positive correlation ($R^2$=0.8542) was revealed between the logarithm of the octanol-air partitioning coefficient ($logK_{oa}$) and Cp/Ca for the PAHs with a higher gaseous state in air, but there was a negative correlation ($R^2$=0.8131) for the PAHs with a lower gaseous state. The Ca-Cp model could not be used to estimate PAHs concentrations in air using deposited PAHs concentrations on pine needles, but the logKoa-Cp/Ca model could be used. Conclusions: It was found that pine needles can be used as passive samplers of atmospheric PAHs.

References

  1. Eitzer BD, Hites RA. Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 1989; 23(11): 1396-1401. https://doi.org/10.1021/es00069a011
  2. Choi SD, Chang YS. Air monitoring of persistent organic pollutants using passive air samplers. J Korean Soc Atmos Environ 2005; 21(5): 481-494. (Korean)
  3. Chun MY. A study on the deposition of PCBs in air on coniferous needles. J Korean Soc Environ Eng 1998; 20(10): 1377-1383. (Korean)
  4. Chun MY. Characteristics of PCDD/Fs deposited on pine needles. J Korean Soc Environ Eng 2005; 27(6): 599-605. (Korean)
  5. Chun MY. Characteristics of PAHs absorbed on pine needles. J Environ Toxicol 2008; 23(3): 213-220. (Korean)
  6. Shim IY, Yeo HG, Choi M, Kim TW, Chun MY. Spartial distribution of PCBs pine needles. J Korean Soc Environ Eng 2002; 24(12): 2227-2237. (Korean)
  7. Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B. Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol 2004; 38(17): 4474-4483. https://doi.org/10.1021/es040302r
  8. Shoeib M, Harner T. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 2002; 36(19): 4142-4151 https://doi.org/10.1021/es020635t
  9. Aboal JR, Fernandez JA, Carballeira A. Sampling optimization, at site scale, in contamination monitoring with moss, pine and oak. Environ Pollut 2001; 115(2): 313-316. https://doi.org/10.1016/S0269-7491(01)00116-6
  10. Bacci E, Cerejeira MJ, Gaggi C, Chemello G, Calamari D, Vighi M. Chlorinated dioxins: volatillization from soils and bioconcentration in plant leaves. Bull Environ Contam Toxicol 1992; 48(3): 401-408.
  11. Hanari N, Horii Y, Okazawa T, Falandysz J, Bochentin I, Orlikowska A, et al. Dioxin-like compounds in pine needles around Tokyo Bay, Japan in 1999. J Environ Monit 2004; 6(4): 305-312. https://doi.org/10.1039/b311176h
  12. Kylin H, Hellstrom A, Nordstrand E, Zaid A. Organochlorine pollutants in Scots pine needles--biological and site related variation within a forest stand. Chemosphere 2003; 51(8): 669-675. https://doi.org/10.1016/S0045-6535(03)00101-2
  13. Leed WA, Steinnes E, Jones KC. Atmospheric deposition of PCBs to moss (Hylocomium splendens) in Norway between 1977 and 1990. Environ Sci Technol 1996; 30(2): 524-530. https://doi.org/10.1021/es950275s
  14. Meredith ML, Hites RA. Polychlorinated biphenyl accumulation in tree bark and wood growth rings. Environ Sci Technol 1987; 21(7): 709-712. https://doi.org/10.1021/es00161a013
  15. Muir DCG, Segstro MD, Welbourn PM, Toom D, Eisenreich SJ, Macdonald CR, et al. Patterns of accumulation of airborne organochlorine contaminants in lichens from the Upper Great Lakes Region of Ontario. Environ Sci Technol 1993; 27(6): 1201-1210. https://doi.org/10.1021/es00043a022
  16. Ok G, Ji SH, Kim SJ, Kim YK, Park JH, Kim YS, et al. Monitoring of air pollution by polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans of pine needles in Korea. Chemosphere 2002; 46(9-10): 1351-1357. https://doi.org/10.1016/S0045-6535(01)00261-2
  17. Safe S, Brown KW, Donnelly KC, Anderson CS, Markiewicz KV, McLachlan MS, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans associated with wood-preserving chemical sites: biomonitoring with pine needles. Environ Sci Technol 1992; 26(2): 394-396. https://doi.org/10.1021/es00026a023
  18. Strachan WMJ, Kylin H, Eriksson G, Jensen S. Organochlorine compounds in pine needles: methods and trends. Environ Toxicol Chem 1994; 13(3): 443-451. https://doi.org/10.1002/etc.5620130312
  19. Yeo HG, Choi M, Chun MY, Kim TW, Sunwoo Y. Estimation of bio-monitering for PCBs concentration in air using plant. J Korean Soc Atmos Environ 2002; 18(4): 265-274. (Korean)
  20. Yeo HG, Cho KC, Choi M, Kim TW, Chun MY. Deposition characteristics of atmospheric PCBs depending on exposure periods using pine needles. J Korean Soc Environ Eng 2006; 28(8): 836-842. (Korean)
  21. Di Guardo A, Zaccara S, Cerabolini B, Acciarri M, Terzaghi G, Calamari D. Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. Chemosphere 2003; 52(5): 789-797. https://doi.org/10.1016/S0045-6535(03)00256-X
  22. Yoo SG, Kim TW, Chun MY. Deposition of polycyclic aromatic hydrocarbons on tree leaves. Korean J Environ Agric 1999; 18(2): 116-121. (Korean)
  23. Bacci E, Calamari D, Gaggi C, Vighi M. Bioconcentration of organic chemical vapors in plant leaves: experimental measurements and correlation. Environ Sci Technol 1990; 24(6): 885-889. https://doi.org/10.1021/es00076a015
  24. Hauk H, Umlauf G, McLachlan MS. Uptake of gaseous DDE in spruce needles. Environ Sci Technol 1994; 28(13): 2372-2379. https://doi.org/10.1021/es00062a023
  25. Thomas G, Sweetman AJ, Ockenden WA, Mackay D, Jones KC. Air-pasture transfer of PCBs. Environ Sci Technol 1998; 32(7): 936-942. https://doi.org/10.1021/es970761a
  26. Mackay D, Shiu WY, Ma KC. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, Volume II. Cherry Hill, New Jersey: Lewis Publishers; 1997. p. 250-251.
  27. Odabasi M, Cetin E, Sofuoglu A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas-particle partitioning in an urban atmosphere. Atmos Environ 2006; 40(34): 6615-6625. https://doi.org/10.1016/j.atmosenv.2006.05.051
  28. Baek SO, Choi JS. Effect of ambient temperature on the distribution of atmospheric concentrations of polycyclic aromatic hydrocarbons in the vapor and particulate phase. J Korean Air Pollut Res Assoc 1998; 14(2): 117-131. (Korean)
  29. Welsch-Pausch K, McLachlan MS, Umlauf G. Determination of the principal pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Ray Grass). Environ Sci Technol 1995; 29(4): 1090-1098. https://doi.org/10.1021/es00004a031