A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer

전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구

  • 안현모 (동아대 공대 전기공학과) ;
  • 김민수 (한국전기연구원 재료응용연구본부) ;
  • 송재성 (한국전기연구원 재료응용연구본부) ;
  • 한성진 (동아대 전기공학과)
  • Received : 2011.08.03
  • Accepted : 2011.09.17
  • Published : 2011.10.01


This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.


Supported by : 한국에너지 기술평가원(KETEP)


  1. Zhanq Tao, Cai Jin-ding, "Study on Life Prediction Method of Oil Immersed Power Transformer", Electric Insulation and Dielectric Phenomena, pp. 486-489, Oct. 2008.
  2. Martin J. Heathcote, "The J&P Transformer Book", Elsevier, Inc, 2007.
  3. 안현모, 오연호, 한성진,"전자계-열계 결합해석에 의한 전력용 변압기의 열전달 해석", 대한전기학회지, Vol. 58, No.11, pp.2155-2161, Nov. 2009.
  4. 이형직, "유한요소법에 의한 유체역학.열전도 해석 입문", Perason Education Korea, 2000.
  5. John C. Tannehill, Dale A Anderson, "Computational Fluid Mechanics and Heat Transfer", Taylor & Francis, 1997.
  6. Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford, 2007.
  7. K. Preis, O. Biro, G. Buchgraber, "Thermal-Electromagnetic Coupling in the Finite-Element Simulation of Power Transformers", IEEE Trans. Magnetics, vol. 42, no. 4, pp. 999-1002, Apr. 2006.
  8. G. Bertotti, "General Properties of Power Losses in Soft Ferromagnetic Materials", IEEE Trans. Magnetics, vol. 24, no. 4, pp. 621-630, Jan. 1988.
  9. J. H. Harlow, "Electric Power Transformer Engineering", CRC Press, 2007.
  10. S. V. Kulkarni, S. A. Khaparde, "Transformer Engineering(Design and Practice)", Marcel Dekker INC, 2004.
  11. Cengel, Y. A, "Heat Transfer-A Practical Approach", McGrawHill, 2006.
  12. 김중경, 오연호, 이지연, 한성진, "열유동을 고려한 GIS 모선의 온도상승 예측", 대한전기학회지, Vol 58, No.4, pp.742-747, Apr. 2009.
  13. G. L. Alegi, W. Z. Black, "Real-Time Thermal Model for An Oil-Immersed, Forced-Air Cooled Transformer", IEEE Tran. on Power Delivery, Vol. 5, No. 2, Apr. 1990.
  14. S. H. Lee, B. Y. Lee, H. K. Kim, and H. G. Kim, "Local Heat Source Approximation Technique for Predicting Temperature Rise in Power Capacitors", IEEE Trans. Magnetics, vol. 45, no. 3, pp. 1250-1253, Mar. 2009.
  15. C. Ortiz, A.W. Skorek, M. Lavoie, and P. Benard, "Parallel CFD Analysis of Conjugate Heat Transfer in Dry-Type Transformer", IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1530-1534, Jul.-Aug. 2009.
  16. 노오연, "점성유동이론", 박영사, 2007.
  17. H.-M. Ahn, Y.-H. Oh, S.-C. Hahn, "Experimental Verification of Temperature Rise Prediction for Power Transformer by Coupled Electromagnetic- Thermal-Fluid Analysis", INTERMAG 2011 Conf., Apr. 2011.

Cited by

  1. Multi-physics Analysis for Temperature Rise Prediction of Power Transformer vol.9, pp.1, 2014,