DOI QR코드

DOI QR Code

Inference Based on Generalized Doubly Type-II Hybrid Censored Sample from a Half Logistic Distribution

  • Received : 20110600
  • Accepted : 20110700
  • Published : 2011.09.30

Abstract

Chandrasekar et al. (2004) introduced a generalized Type-II hybrid censoring. In this paper, we propose generalized doubly Type-II hybrid censoring. In addition, this paper presents the statistical inference on the scale parameter for the half logistic distribution when samples are generalized doubly Type-II hybrid censoring. The approximate maximum likelihood(AMLE) method is developed to estimate the unknown parameter. The scale parameter is estimated by the AMLE method using two di erent Taylor series expansion types. We compar the AMLEs in the sense of the mean square error(MSE). The simulation procedure is repeated 10,000 times for the sample size n = 20; 30; 40 and various censored samples. The $AMLE_I$ is better than $AMLE_{II}$ in the sense of the MSE.

References

  1. Balakrishnan, N. (1985). Order statistics from the half logistic distribution, Journal of Statistical Computation and Simulation, 20, 287-309. https://doi.org/10.1080/00949658508810784
  2. Balakrishnan, N. and Puthenpura, S. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of Statistical Computation and Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
  3. Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half logistic distribution with Type-II right censoring, IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
  4. Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring, Naval research logistics, 51, 994-1004. https://doi.org/10.1002/nav.20038
  5. Childs, A., Chandrasekar, B., Balakrishnan, N. and Kun D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330. https://doi.org/10.1007/BF02530502
  6. Epstein, B. (1954). Truncated life tests in the exponential case, The Annals of Mathematical Statistics, 25, 555-564. https://doi.org/10.1214/aoms/1177728723
  7. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055

Cited by

  1. An Estimation of the Entropy for a Rayleigh Distribution Based on Doubly-Generalized Type-II Hybrid Censored Samples vol.16, pp.7, 2014, https://doi.org/10.3390/e16073655
  2. Estimation of the half-logistic distribution based on multiply Type I hybrid censored sample vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1581