Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method

화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량

  • Kim, Kyung-Min (Department of Chemistry, Kyungpook National University) ;
  • Jang, Taek-Gyun (Department of Chemistry, Kyungpook National University) ;
  • Kim, Young-Ho (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • Oh, Sang-Huyb (Center for Gas Analysis, Korea Research Institute of Standards and Science) ;
  • Lee, Sang-Hak (Department of Chemistry, Kyungpook National University)
  • 김경민 (경북대학교 화학과) ;
  • 장택균 (경북대학교 화학과) ;
  • 김영호 (경북대학교 차세대에너지기술연구소) ;
  • 오상협 (한국표준과학연구원 대기환경표준센터) ;
  • 이상학 (경북대학교 화학과)
  • Received : 2011.05.30
  • Accepted : 2011.06.13
  • Published : 2011.08.25


A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.


  1. B. H. Sipple and J. Swartout, 'Mercury study report to Congress', Vol 5, Environmental protection agency, Washington D.C., 1997.
  2. C. Baird and M. Cann, 'Environmental chemistry', 3rd Ed., W. H. Freeman & company, New York, 2004.
  3. M. Gochfeld, Ecotox. Environ. Safety, 56(1), 174-179 (2003).
  4. C. Anthony, Water Air Soil Poll., 98(2), 241-254 (1997).
  5. Y. Wu, S. Wang, D. Streets, J. Zhao, M. Chen and J. Jiang, Environ. Sci. Technol., 40, 5312-5318 (2006).
  6. D. Streets, J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian and X. Feng, Atmos. Environ., 39, 7789-7806 (2005).
  7. M. S. Landis, G. J. Keeler, K. I. Al-Wali and R. K. Stevens, Atmos. Environ., 38, 613-622 (2004).
  8. WHO-IPCS. Environmental health criteria.
  9. P. B. Tchounwou, W. K. Ayensu, N. Ninashvili and D. Sutton, Environ. Toxicol., 18(3), 149-175 (2003).
  10. H. A. Young, D. A. Geier and M. R. Geier, J. Neurol. Sci., 271(1), 110-118 (2008).
  11. G. A. Westpha, S. Asgari, T. G. Schulz, J. Bunger, M. Muller and E. Hallier, Arch. Toxicol., 77(1), 50-55 (2003).
  12. A. Cebulska-Wasilewska, A. Panek, Z. Zabinski and P. Moszczynski, Mutat. Res., 586, 102-114 (2005).
  13. N. Strafford and P. F. Wyatt, Analyst, 61, 528-535 (1936).
  14. H. Smith, Anal. Chem., 35, 635-636 (1963).
  15. J. D. Winefordner and R. A. Staab, Anal. Chem., 36(7), 1367-1369 (1964).
  16. K. Tanabe, K. Chiba, H. Haraguchi and K. Fuwa, Anal. Chem., 53, 1450-1453 (1981).
  17. J. Tolgyessy and E. H. Klehr, 'Nuclear Environmental Chemical Analysis', Wiley, New York, 1987.
  18. A. Stroh, U. Voellkopf, E. R. Denoyer, J. Anal. At. Spectrom., 7, 1201-1206 (1992).
  19. J. D. Winefordner and T. J. Vickers, Anal. Chem., 36, 161-168 (1964).
  20. B. Aizpun, M. L. Fernandez, E. Blanco and A. Sanz-Medel, J. Anal. At. Spectrom., 9(11), 1279-1284 (1994).
  21. J. Qvarnstrom, Q. Tu, W. Frech and C. Ludke, Analyst, 125(6), 1193-1197 (2000).
  22. H. Li, Y. Zhang and X. Wang, Microchim. Acta., 160, 119-123 (2008).
  23. M. Yuan and Y. Li, Org. Lett., 9(12), 2313-2316 (2007).
  24. I. P. A. Morais, I. V. Toth and O. S. S Gangel, Talanta, 66(2), 341-347 (2005).
  25. A. M. Powe, S. Das, M. Lowry, B. El-Zahab, S. O. Fakayode, M. L. Geng, G. A. baker, L. Wang, M. E. McCarroll, G. Patonay, M. Li, M. Aljarrah, S. Neal and I. M. Warner, Anal. Chem., 82(12), 4865-4894 (2010).
  26. C. Xiao, D. A. Palmer, D. J. Wesolowski, S. B. Lovitz and D. W. King, Anal. Chem., 74(9), 2210-2216 (2002).
  27. J. C. Miller and J. N. Miller, 'Statistics for Analytical Chemistry', 2nd Ed., Ellis Horwood, Chichester, England, 1988.
  28. Z. Zhang, S. Zhang and X. Zhang, Analytica. Chimica. Acta., 541(1-2), 37-47 (2005).
  29. J. P. Auses, S. L. Cook and J. T. Maloy, Anal. Chem., 47, 244-249 (1975).
  30. X. F. Wang and L. Andrews, Inorg. Chemi., 44(1), 108-113 (2005).