DOI QR코드

DOI QR Code

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method

화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량

  • Received : 2011.05.30
  • Accepted : 2011.06.13
  • Published : 2011.08.25

Abstract

A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Keywords

mercury (II) ion;chemiluminescence;luminol;metal ion determination

References

  1. B. H. Sipple and J. Swartout, 'Mercury study report to Congress', Vol 5, Environmental protection agency, Washington D.C., 1997.
  2. C. Baird and M. Cann, 'Environmental chemistry', 3rd Ed., W. H. Freeman & company, New York, 2004.
  3. M. Gochfeld, Ecotox. Environ. Safety, 56(1), 174-179 (2003). https://doi.org/10.1016/S0147-6513(03)00060-5
  4. C. Anthony, Water Air Soil Poll., 98(2), 241-254 (1997).
  5. Y. Wu, S. Wang, D. Streets, J. Zhao, M. Chen and J. Jiang, Environ. Sci. Technol., 40, 5312-5318 (2006). https://doi.org/10.1021/es060406x
  6. D. Streets, J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian and X. Feng, Atmos. Environ., 39, 7789-7806 (2005). https://doi.org/10.1016/j.atmosenv.2005.08.029
  7. M. S. Landis, G. J. Keeler, K. I. Al-Wali and R. K. Stevens, Atmos. Environ., 38, 613-622 (2004). https://doi.org/10.1016/j.atmosenv.2003.09.075
  8. WHO-IPCS. Environmental health criteria. http://www.inchem.org/documents/ehc/ehc/ehc101.htm#PartNumber:10
  9. P. B. Tchounwou, W. K. Ayensu, N. Ninashvili and D. Sutton, Environ. Toxicol., 18(3), 149-175 (2003). https://doi.org/10.1002/tox.10116
  10. H. A. Young, D. A. Geier and M. R. Geier, J. Neurol. Sci., 271(1), 110-118 (2008). https://doi.org/10.1016/j.jns.2008.04.002
  11. G. A. Westpha, S. Asgari, T. G. Schulz, J. Bunger, M. Muller and E. Hallier, Arch. Toxicol., 77(1), 50-55 (2003). https://doi.org/10.1007/s00204-002-0405-z
  12. A. Cebulska-Wasilewska, A. Panek, Z. Zabinski and P. Moszczynski, Mutat. Res., 586, 102-114 (2005). https://doi.org/10.1016/j.mrgentox.2005.06.009
  13. N. Strafford and P. F. Wyatt, Analyst, 61, 528-535 (1936). https://doi.org/10.1039/an9366100528
  14. H. Smith, Anal. Chem., 35, 635-636 (1963). https://doi.org/10.1021/ac60199a042
  15. J. D. Winefordner and R. A. Staab, Anal. Chem., 36(7), 1367-1369 (1964). https://doi.org/10.1021/ac60213a002
  16. K. Tanabe, K. Chiba, H. Haraguchi and K. Fuwa, Anal. Chem., 53, 1450-1453 (1981). https://doi.org/10.1021/ac00232a033
  17. J. Tolgyessy and E. H. Klehr, 'Nuclear Environmental Chemical Analysis', Wiley, New York, 1987.
  18. A. Stroh, U. Voellkopf, E. R. Denoyer, J. Anal. At. Spectrom., 7, 1201-1206 (1992). https://doi.org/10.1039/ja9920701201
  19. J. D. Winefordner and T. J. Vickers, Anal. Chem., 36, 161-168 (1964). https://doi.org/10.1021/ac60207a052
  20. B. Aizpun, M. L. Fernandez, E. Blanco and A. Sanz-Medel, J. Anal. At. Spectrom., 9(11), 1279-1284 (1994). https://doi.org/10.1039/ja9940901279
  21. J. Qvarnstrom, Q. Tu, W. Frech and C. Ludke, Analyst, 125(6), 1193-1197 (2000). https://doi.org/10.1039/b000933o
  22. H. Li, Y. Zhang and X. Wang, Microchim. Acta., 160, 119-123 (2008). https://doi.org/10.1007/s00604-007-0816-x
  23. M. Yuan and Y. Li, Org. Lett., 9(12), 2313-2316 (2007). https://doi.org/10.1021/ol0706399
  24. I. P. A. Morais, I. V. Toth and O. S. S Gangel, Talanta, 66(2), 341-347 (2005). https://doi.org/10.1016/j.talanta.2004.10.007
  25. A. M. Powe, S. Das, M. Lowry, B. El-Zahab, S. O. Fakayode, M. L. Geng, G. A. baker, L. Wang, M. E. McCarroll, G. Patonay, M. Li, M. Aljarrah, S. Neal and I. M. Warner, Anal. Chem., 82(12), 4865-4894 (2010). https://doi.org/10.1021/ac101131p
  26. C. Xiao, D. A. Palmer, D. J. Wesolowski, S. B. Lovitz and D. W. King, Anal. Chem., 74(9), 2210-2216 (2002). https://doi.org/10.1021/ac015714m
  27. J. C. Miller and J. N. Miller, 'Statistics for Analytical Chemistry', 2nd Ed., Ellis Horwood, Chichester, England, 1988.
  28. Z. Zhang, S. Zhang and X. Zhang, Analytica. Chimica. Acta., 541(1-2), 37-47 (2005). https://doi.org/10.1016/j.aca.2004.11.069
  29. J. P. Auses, S. L. Cook and J. T. Maloy, Anal. Chem., 47, 244-249 (1975). https://doi.org/10.1021/ac60352a008
  30. X. F. Wang and L. Andrews, Inorg. Chemi., 44(1), 108-113 (2005). https://doi.org/10.1021/ic048673w