DOI QR코드

DOI QR Code

Analysis of adsorption behavior of lead ion on to surface modified AlPO4 materials

표면처리된 AlPO4에 대한 납 이온의 흡착 거동 분석

  • Kim, Young-Ho (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Kil, Hyun-Suk (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Kang, Kwang-Cheol (Microfilter Co., Ltd.) ;
  • Choi, Suk-Nam (Department of Chemistry, College of Natural Sciences, Kongju National University) ;
  • Rhee, Seog-Woo (Department of Chemistry, College of Natural Sciences, Kongju National University)
  • Received : 2011.03.24
  • Accepted : 2011.06.28
  • Published : 2011.08.25

Abstract

$AlPO_4$-type material was synthesized by a reaction of $Al(OH)_3$ and H3PO4 with organic templates from wastewater of detergent manufacturer. The surface of material was coated with carboxylate groups by the reaction of succinic anhydride with surface amino groups which were formed by treatment of the material with APTMS. Powder XRD patterns showed the characteristic patterns of $AlPO_4$. Morphology of the material was examined using a SEM and the functional groups were investigated by FT-IR analysis. The surface charge of a aqueous suspension was analyzed: $AlPO_4-NH_2$ has positively charged surface while $AlPO_4$-COOH has negatively charged one. They were used for the removal of toxic metals from aqueous solution. The lead ions were adsorbed on the surface by the formation of complexes with carboxylate of surface and $K_d$ was 91.1 mL/g. In conclusion, the $AlPO_4$-COOH might be applicable in the removal of toxic metal ions from aqueous system.

Keywords

$AlPO_4$;ion-exchange;lead;surface charge;complex formation

Acknowledgement

Supported by : 한국연구재단

References

  1. National Institute of Environmental Research, 2006.
  2. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, J. Am. Chem. Soc., 104(4), 1146-1147 (1982). https://doi.org/10.1021/ja00368a062
  3. Y. Wan, C. D. Williams, J. J. Cox and C. V. A. Duke, Green Chem., 1(3), 169-171 (1999). https://doi.org/10.1039/a901382b
  4. M. E. Davis and R. F. Lobo, Chem. Mater., 4(4), 756-768 (1992). https://doi.org/10.1021/cm00022a005
  5. I. Braun, G. Schulz-Ekloff, D. Wohrle and W. Lautenschlager, Micropor., Mesopor. Mat., 23(1-2), 79-81 (1998). https://doi.org/10.1016/S1387-1811(98)00180-2
  6. T. Kodaira, K. Miyazawa, T. Ikeda and Y. Kiyozumi, Micropor. Mesopor. Mat., 29(3), 329-337 (1999). https://doi.org/10.1016/S1387-1811(99)00002-5
  7. J. H. Park, S. H. Park and S. H. Jhung, J. Kor. Chem. Soc., 53(5), 553-559 (2009). https://doi.org/10.5012/jkcs.2009.53.5.553
  8. B. V. S. Kumar, K. Byrappa, K. M. L. Rai, M. K. Devaraju, M. S. V. Kumar and C. Ranganathaiah, Ind. J. Chem., 46A(1), 86-90 (2007).
  9. A. Ulman, Chem. Rev., 96(4), 1533-1554 (1996). https://doi.org/10.1021/cr9502357
  10. N. L. Jeon, K. Finnie, K. Branshaw and R. G. Nuzzo, Langmuir, 13(13), 3382-3391 (1997). https://doi.org/10.1021/la970166m
  11. A. Suwalski, H. Dabboue, A. Delalande, S. F. Bensamoun, F. Canon, P. Midoux, G. Saillant, D. Klatzmann, J.-P. Salvetat and C. Pichon, Biomaterials, 31(19), 5237-5245 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.077
  12. Y. An, M. Chen, Q. Xue and W. Liu, J. Colloid Interface Sci., 311(2), 507-513 (2007). https://doi.org/10.1016/j.jcis.2007.02.084
  13. J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, H. Vazquez-Torres, L. F. Garfias-Mesias and D. R. Paul, Thermochim. Acta, 457(1-2), 92-102 (2007). https://doi.org/10.1016/j.tca.2007.03.008
  14. N. Huang and J. Wang, J. Anal. Appl. Pyrolysis, 84(2), 124-130 (2009). https://doi.org/10.1016/j.jaap.2009.01.001
  15. J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie, and W. P. Pan, J. Appl. Polym. Sci., 83(8), 1702-1710 (2002). https://doi.org/10.1002/app.10093
  16. H. Ren and F. Xin, Catal. Commun., 7(11), 848-854 (2006). https://doi.org/10.1016/j.catcom.2006.03.010
  17. D. Chakrabortty, J. N. Ganguli and C. V. V. Satyanarayana, Micropor. Mesopor. Mat., 137(1-3), 65-71 (2011). https://doi.org/10.1016/j.micromeso.2010.08.022
  18. D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, "Introduction to Spectroscopy", 4th Ed., pp. 15-86, Brooks/Cole, Cengage Learning, Belmont, U.S.A., 2009.
  19. W. Mekky and P. S. Nicholson, J. Mater. Proc. Technol., 190(1-3), 393-396 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.110
  20. Y. Ma, N. Li and S. Xiang, Micropor. Mesopor. Mat., 86(1-3), 329-334 (2005). https://doi.org/10.1016/j.micromeso.2005.08.001
  21. N. Venkatathri, Mater. Lett., 58(1-2), 241-244 (2003).
  22. E.-P. Ng, L. Delmotte and S. Mintova, Green Chem., 10(10), 1043-1048 (2008). https://doi.org/10.1039/b806525j
  23. D. A. Kron, B. T. Holland, R. Wipson, C. Maleke and A. Stein, Langmuir, 15(23), 8300-8308 (1999). https://doi.org/10.1021/la990553r
  24. B. Parlitz, U. Lohse and E. Schreier, Micropor. Mater., 2(3), 223-228 (1994). https://doi.org/10.1016/0927-6513(93)E0054-K
  25. M. I. Goller, C. Barthet, G. P. McCarthy, R. Corradi, B. P. Newby, S. A. Wilson, S. P. Armes and S. Y. Luk, Colloid. Polym. Sci., 276(11), 1010-1018 (1998). https://doi.org/10.1007/s003960050340
  26. T. U. Aualiitia and W. E. Pickering, Talanta, 34(2), 231-237 (1987). https://doi.org/10.1016/0039-9140(87)80204-7
  27. A. Chadlia, K. Mohamed, L. Najah and M. M. Farouk, J. Hazard. Mater., 172(2-3), 1579-1590 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.030
  28. O. Karnitz Jr., L. V. A. Gurgel, J. C. Perin de Melo, V. R. Botaro, T. M. S. Melo, R. P. F. Gi and L. F. Gil, Biores. Technol., 98(6), 1291-1297 (2007). https://doi.org/10.1016/j.biortech.2006.05.013