Separation of selenite and selenate using magnetite

마그네타이트를 이용한 selenite와 selenate의 분리

  • Min, Je-Ho (Graduate School of Greenenergy Technology, Chung-nam National University) ;
  • Kim, Seung-Soo (Korea Atomic Energy Research Institute) ;
  • Baik, Min-Hoon (Korea Atomic Energy Research Institute) ;
  • Bae, Kie-Seo (Graduate School of Greenenergy Technology, Chung-nam National University)
  • 민제호 (충남대학교 녹색에너지기술전문대학원) ;
  • 김승수 (한국원자력연구원) ;
  • 백민훈 (한국원자력연구원) ;
  • 배기서 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2011.07.06
  • Accepted : 2011.07.26
  • Published : 2011.08.25


Selenium is one of the interesting elements in human body, because it's important micro-nutrient for human health as the essential biological tissue in protein. Selenite ($SeO_3^{2-}$) and selenate ($SeO_4^{2-}$) are the dominant dissolved selenium species in natural water, and their toxicity and chemical properties are very different each other. Thus it is necessary to separate the two selenium species for understanding selenium behaviors in natural waters. Some reported methods, using an alumina-filled column and an ion chromatography, to separate the selenite and selenite may be difficult to directly apply to the natural water. Therefore magnetite selectively adsorbs selenite and selenate according to pH of solution, the separation of selenite and selenate using a magnetite-filled column was successfully obtained at weak alkali solutions. Moreover, the influence of dissolved anions in natural water at the selenite sorption onto magnetite was also investigated because they could hinder the sorption of selenite onto magnetite. In other to directly apply to the natural water, reactive sites of magnetite should be considered because dissolved silicate in natural water can hinder the adsorption of selenite onto magnetite.




  1. V. Chand and S. Prasad, J. Hazard. Mater., 165(1-3), 780-788 (2009).
  2. L. Schomburg, U. Schweizer and J. Kohrle, Cell. Mol. Life Sci. 61, 1998-1995 (2004).
  3. M. E. Monero, C. Perez-Conde and C. Camara, J. Anal. Atom. Spectrom., 15, 681-686 (2000).
  4. P. C. Hernandez, J. F. Tyson, P. C. Uden and D. Yates, J. Anal. Atom. Spectrom. 22, 298-304 (2007)
  5. S. Li and N. Deng, Anal Bioanal Chem, 374, 1341-1345 (2002).
  6. C. Xiong, M. He and B. Hu, Talanta, 76, 772-779 (2008).
  7. C. Y. Lu, X. P. Yan, Z. P. Zhang, Z. P. Wang and L. W. Liu, J. Anal. At. Spectrom., 19, 277-281 (2004).
  8. C. H. Yu, Q. T. Cai, Z. X. Guo, Z. G. Yang and S. B. Khoo, Spectrochim. Acta, 58B, 1335-1349 (2003).
  9. C. Z. Huang, B. Hu and Z. C. Jiang, Spectrochim. Acta 62B, 454 (2007).
  10. K. PyrzynAska, P. Drzewicz and M. Trojanowicz, Anal. Chimica Acta, 363, 141-146 (1998).
  11. T. Missana, U. Alonso, A. C. Scheinost, N. Granizo and M. Garcia-gutierrez, Geochemi. et Cosmochimica Acta, 73, 6205-6217 (2009).
  12. N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J. J. Ehrhardt, J. Coll. Inter. Sci., 329, 17-23 (2009).
  13. M. Martinex, J. Gimenez, J. De Pablo, M. Rovira and L. Duro, Applied Surface Science, 252, 3767-3773 (2006).
  14. A. C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez-Martinez, H. Zaenker, H. Funke and L. Charlet, J. Contam. Hydrol., 102, 228-245 (2008).
  15. R. L. A. Loyo, S. I. Nikitenko, A. C. Scheinost and M. Simonoff, Environ. Sci. Technol., 42, 2451-2456 (2008).
  16. M. Rovira, J. Gimenex, M. Martinex, X. M. Llado, J. Pablo, V. Marti and L. Duro, J. Hazardous Materials, 150, 279-284 (2008).
  17. S. S. Kim, M. H. Baik, J. W. Choi, H. S. Shin and J. I. Yun, J. Radioanal. Nucl. Chem., 286, 91-97 (2010).
  18. N. Miekeley, R. C. Pereira, E. A. Casartelli, Ana C. Almedia and M. F. B. Carvalho, Spectrochimica Acta Part B, 60, 633-641 (2005).