Shape Extraction of Near Target Using Opening Operator with Adaptive Structure Element in Infrared Images

Hyuk-Ju Kwon* Associate Member, Tae-Wuk Bae**, Byoung-Ik Kim*, Sung-Hak Lee*, Young-Choon Kim**, Sang-Ho Ahn***, Kyu-Ik Sohng* Regular Members

요 약
적외선 영상의 근거리 표적 (near targets)은 표적의 내부영역이 화소 값이 균일하고, 경계 영역은 배경과 인접 해 있기 때문에 화소 값 변화가 불균일하다. 이러한 특성에 기초하여 본 논문은 적응적 구조요소 (adaptive structure element)을 이용한 열림 영상처리에 의한 적외선 영상 표적 감출 기법을 제안한다. 먼저, 국부 분산 가중치 정보 엔트로피 (weighted information entropy, WIE)를 이용하여 후보 표적군의 위치와 경계영역을 추출한 후, 이 경계 영역에 대하여 열림 연산을 수행하여 대략의 표적 영역을 검출한다. 이 대략의 표적 영역에 대하여 제한한 적응적 구조 요소를 이용한 열림 영상자를 수행함으로써 정확한 표적 모양을 검출한다. 이 구조요소는 표적 경계 영역에서 필터링의 가중치 정보 엔트로피의 평균값을 계산함으로써 얻어진 표적 경계 폭에 의한 결정된다. 실험 결과로부터 제안한 방법이 기존의 방법에 비해 추출 성능이 뛰어남을 확인할 수 있었다.

Key Words : Target Extraction, Structure Element, Infrared Images, Weighted Information Entropy

ABSTRACT

Near targets in the infrared (IR) images have the steady feature for inner region and the transient feature for the boundary region. Based on these features, this paper proposes a new method to extract the fine target shape of near targets in the IR images. First, we detect the boundary region of the candidate targets using the local variance weighted information entropy (WIE) of the original images. And then, a coarse target region can be estimated based on the labeling of the boundary region. For the coarse target region, we use the opening filter with an adaptive structure element to extract the fine target shape. The decision of the adaptive structure element size is optimized for the width information of target boundary by calculating the average WIE in the enlarged windows. The experimental results show that a proposed method has better extraction performance than the previous threshold algorithms.

* 경북대학교 전자전기컴퓨터공학부 오디오비디오 신호처리 및 자동차전자공학 연구실(tfendcorps@knu.ac.kr, nanninggo@gmail.com)
** 영동대학교 정보통신학과 장학진학과(jckim@youngdong.ac.kr), *** 인제대학교 전자공학과(lecash@inje.ac.kr)
논문번호 : KICS2010-12-621, 접수일자 : 2010년 12월 21일, 최종논문접수일자 : 2011년 8월 16일

546
I. 서 론

적외선 탐색 및 추적 (infrared searching and tracking system, IRST)에 있어서 표적 위치 및 표적 정보를 추출하는 것은 매우 중요하다\[^{[12]}\]. 적외선 (Infrared, IR) 영상에서 표적 검출 기법은 표적의 배경을 제거하거나 표적의 특성을 이용하여 표적을 추출하는 방법으로 나뉜다. 적외선 영상은 물체가 방출하는 열 복사에너지로 측정하는 적외선 센서 (IR sensor)에 의해 얻어진다. 적외선 영상은 표적의 복사에너지뿐만 아니라 주변의 클러터를 포함하기 때문에 낮은 SNR (signal-noise-ratio)를 가지게 된다. 이러한 적외선 영상의 특성 때문에 표적을 추출하거나 표적의 모양을 추출하는 일은 어려운 일이다. 근거리 표적은 표적의 내부영역은 흐리고, 경계 외곽영역은 배경과 인접해 있기 때문에 화소값 변화가 불규칙하다. 원거리 소형표적에 적용되는 알고리즘을 근거리 표적에 적용시키기에는 표적의 특성 및 분포가 다르기 때문에 이에 적합한 새로운 알고리즘이 필요하다.

표적과 배경을 분류하기 위하여 Ostu\[^{[1]}\]의 분류치 분류법을 이용할 수 있다. 이 방법은 영상의 화소값들의 히스토그램 분석하므로써 배경과 표적을 분리할 수 있다. 그러나 이 방법은 표적의 공간적 정보를 이용하지 않으며, 표적 및 배경의 분류치 설정이 어렵기 때문에 정확하게 표적이 모양을 추출하기 어렵다. 최근 수학적인 형태학 기법인 탐석 (top-hat) 필터를 이용한 소형 표적 검출이 연구되고 있다\[^{[4]}\]. 이 방법들은 고역 통과 필터로서 배경의 클러터는 억제하고 표적은 강화시킨다. 그러나 이 방법은 구조 요소 (structure element)에 의해 표적 추출 성능이 좌우되기 때문에 표적 및 클러터의 특성을 알고 있는 경우에 좋은 성능을 가진다. 또한 원거리 표적이지만 적합되기 때문에 근거리 표적에 적용하기 어렵다.

기존의 적외선 표적 추출은 원거리 표적에 국한되었다. 최근 Ostu 및 형태학적 연산자 (morphological operator)인 탐석 필터를 이용한 원거리 적외선 표적 추출 기법이 다수하여 연구되었다\[^{[10]}\]. 하지만 이러한 기법들은 근거리 표적에 적용한 경우 표적을 정확하게 추출하기 어렵다. 이에 따라 근거리 표적 추출을 위한 형태학적 연산자에 대한 연구가 필요하다.

본 논문에서는 적응적인 구조 요소를 이용한 열림 연산자 (opening operator)를 이용한 근거리 표적 추출 알고리즘을 제안하였다. 적외선 영상에 대하여 국부 분산 (local variance) 가중치 정보 엔트로피 (weighted information entropy, WIE) 연산을 수행한 후, 이 가중치 정보 엔트로피의 두 분석치를 이용하여 후보 표적의 위치 및 그 표적 경계 영역을 추출한다. 위치 추정된 표적에 대하여 표적 경계 영역 특성을 고려한 적외선 구조 요소를 선택하고, 이를 이용한 열림 연산자를 적용함으로써 최종 표적 모양을 추출한다. 제안한 방법의 성능을 평가하기 위하여 실제 표적이 포함된 적외선 영상에 대해 기존의 알고리즘과 적용하였다. 그 결과, 제안한 방법이 기존의 방법에 비해 추출 성능이 향상될을 확인할 수 있었다.

II. 기존의 표적 검출 알고리즘

적외선 영상에서 서로 다른 적외선 복사 (IR radiation) 영역을 가진 소형 표적과 같은 물체는 급격한 화소값 변화의 형태를 가진다. 이러한 화소값 변화를 직관적으로 계산하기 위해서 Yang 등\[^{[7]}\]은 가중치 정보 엔트로피 (weighted information entropy, WIE)를 제안하였다.

\[
H(s) = - \sum_{s=1}^{256} (s-s) \cdot p_s \log p_s
\]

(1)

이와 같다. 비교적 화소값의 변화가 적은 평탄 배경 영역은 가중치 정보 엔트로피 값이 작으며, 서로 다른 복사 영역을 가진 소형 표적은 화소값 변화가 크기 때문에 가중치 정보 엔트로피 값이 크다. 식 (1)에서 소형 표적 영역은 영상 전체의 평균 화소값보다 높은 화소값을 가지기 때문에 그 가중치 정보 엔트로피 값이 배경 영역보다 높게 나타난다. 적외선 영상에서 임의의 화소 \(x\)에 대하여, 그 화소에 이웃한 \(m\) 종류의 화소값 \(s_1, s_2, ..., s_m\)에 존재할 경우, 각 화소의 확률은 \(p_1, p_2, ..., p_m\)이다. 임의의 화소 \(x\)에 대한 국부 분산 가중치 정보 엔트로피 (local variance WIE)는

\[
V(x) = - \sum_{i=1}^{m} (r_i - \bar{r}(x))^2 \cdot p_i \log p_i
\]

(2)

와 같다. 여기서 \(\bar{r}\)는 임의의 화소에 이웃한 \(m\) 종류의 화소 값의 평균이다. 그림 1(a)는 원거리 소형 표적과 근거리 표적에 대한 가중치 정보 엔트로피 연산의 결과 영상을 보여준다. 그림 1(b) 및 그림 1(d)에서 밝은 부분이 가중치 정보 엔트로피 값이 높음을 나타낸다. 가
주식 정보 엔트로피 영상은 그림 (a)에서 구할 수 있는 원거리 소형 영상. (b) 원거리 헤지의 국부 분산 가중치 정보 엔트로피 영상. (c) 근거리 헤지의 중앙 영상 및 (d) 근거리 헤지의 국부분산 가중치 정보 엔트로피 영상.

(4)

\[(f \circ b)(s) = \max\{f(s+x) - b(x)\mid (s+x) \in D_i \text{ and } x \in D_k\}\]

그림 2. 구조 요소의 변화에 따른 결과 영상: (a) 원영상1; (b) 원영상2; (c) radius=2, (e) radius=7, 및 (g) radius=10일 경우 그림 (a)의 처리 결과, (d) radius=2, (f) radius=7, 및 (h) radius=10일 경우 그림 (b)의 처리 결과
처리 결과는 구조 요소에 의해 영향을 받으며, 이 구조 요소는 부구상(sub-image)으로써 그 모양 및 크기가 다양하다. 구조 요소는 시뮬레이션 품인 메트랩(matlab)에서 strel 함수로 정의되며, strel(‘disk’, radius)로 표현된다. 여기서 disk는 구조 요소의 모양이 디스크 모양임을 나타내며, radius는 중심에서 외곽까지 반경을 의미한다. 그림 2는 적외선 영상에 대해 구조 요소가 디스크 모양일 경우 변형의 차이에 따른 결과 영상을 비교한 그림이다. 그림 2(a) 및 그림 2(b)는 표적을 포함한 적외선 영상이며, 그림 2(c), 2(e), 및 2(g)는 그림(a)에 대하여 각각 디스크 모양의 반경을 2, 7, 및 10으로 설정한 영역 영상에 의한 처리 결과들이며, 그림 2(d), 2(f), 및 2(h)는 그림(b)에 대하여 각각 디스크 모양의 반경을 2, 7, 및 10으로 설정한 영역 영상에 의한 처리 결과들이다. 형태학 적 영상처리를 표적 추출에 응용할 경우, 표적에 적합한 구조 요소의 모양 및 크기 선택이 처리 결과에 큰 영향을 미친다.

III. 제안한 표적 추출 알고리듬

본 논문에서는 적응적 구조 요소를 이용한 영역 영상에 의한 근거리 표적 추출 알고리듬을 제안하였다. 이 방법은 적외선 영상에서 후보 표적 검출, 최종 표적 결정, 및 최종 표적에 대한 후처리 세 단계로 나뉘고, 전체 블록도는 그림 3과 같다. 먼저 공간적 표적의 위치 및 그 경계 영역을 검출하기 위하여 국부 분산 가중치 정보 엔트로피 (local variance WIE) 영상을 수행한다. 즉, 5×5 필터링 창 주위의 국부 분산 가중치 정보 엔트로피 영상을 수행하여 가중치 정보 엔트로피 영상을 만든 후, 블록화를 이용하여 후보 표적 위치 및 표적 경계 영역을 검출한다. 이후 8×8 화소 크기의 블록을 이용하여 표적 위치 및 경계 영역을 블록화한다. 후보 표적 위치 및 경계 영역 블록에 라벨링 처리를 수행하여, 블록화 과정 중 포함되지 않은 표적 내부 영역은 표적 경계와 같은 라벨링을 수행한 다. 이후, 표적 모양을 정밀하게 추출하기 위하여 영 영역 영상을 이용하며, 이때 사용되는 영역 영상의 구조 요소는 표적 모양을 정확하게 추출하기 위하여 표적 크기에 적응적으로 선택된다.

3.1 후보 표적 탐색

먼저 \(M \times N \) 크기의 적외선 영상에서의 화소 \((i, j) \) \(1 \leq i \leq M, 1 \leq j \leq N \)를 중심으로 5×5 화소 크기 창을 이용하여 가중치 영강 엔트로피 영상, \(I_{WIE}(i, j) \)를 만든다. 이 가중치 영강 엔트로피 영상을 이용하여 후보 표적의 경계 영역 및 표적 위치 검출을 위한 2가지의 블록화를 설정한다. 후보 표적의 경계 영역을 검출하기 위한 첫 번째 블록화, \(Th_b \)는

\[
Th_b = \mu + \alpha \sigma
\]

와 같다. 여기서 \(\mu \) 및 \(\sigma \)는 \(I_{WIE}(i, j) \) 영상의 평균 및 표준편차를 나타내며, \(\alpha \)는 블록화의 가중치를 결정하는 상수이며, 실험적으로 7.0을 사용한다. 후보 표적의 위치를 검출하고, 주변 클러스터 세기를 위한 두 번째 블록화, \(Th_i \)는

\[
Th_i = \beta \times W_{\text{max}}
\]

와 같다. 여기서 \(W_{\text{max}} \)는 \(I_{WIE}(i, j) \)의 최대 화소값을 나타내며, \(\beta \)는 \(W_{\text{max}} \)의 가중치를 결정하는 상수이며, 실험적으로 0.9을 사용한다. 가중치 정보 엔트로피 영상에 식 (7)의 블록화를 적용한 후보 표적의 경계 영역 검출 영상을 그림 4(a)이며, 식 (8)의 블록화를 적용한 후보 표적의 위치 검출 영상은 그림 4(c)와 같다. 일반적으로 식 (7)의 블록화가 식 (8)의 블록화보다 낮기 때문에 후보 표적의 경계 영역 검출 영상은 후보 표적의 위치 검출 영상보다 더 높은 클러스터를 포함하지만, 표적 경계 영역을 더 많이 포함할 수 있다. 그림 4(a)는 근거리 표적에 대해 클러스터들이 많이 포함되었지만, 후보 표적의 경계 영역을 정확하게 검출한 것을 볼 수 있고, 4(c)는 표적의 가장성이 높은 후보 표적의 위치가 근사하게 검출된 것을 볼 수 있다. 그림 4(a) 및 4(c) 영상에 대하여 화소들의 상관관계를 높이기 위하여, 블록화를 수행하였다. 즉, 8×8 화소 블록 안에 식 (7) 및 식 (8)의 블록화 보다 높은 가중치 정보 엔트로피 값이 존재할 경우 그 블록은 255로 설정하고, 나머지 블록은 0으로 설정한다. 그림 4(b) 및 4(d)
그림 4. 후보 표적군의 영역: (a) 후보 표적의 경계 영역 검출 영상, (b) 그림(a)의 블록 영상을 \(I(x, y) \), (c) 후보 표적의 위치 검출 영상, (d) 그림(a)의 블록 영상을 \(I(x, y) \)

예시처럼 식 (7)의 문턱치에 의한 블록 영상을 \(I(x, y) \), 식 (8)의 문턱치에 의한 블록 영상을 \(I(x, y) \)로 나타낸다. 여기서 이 두 블록 영상의 범위는

\[1 \leq x \leq M, 1 \leq y \leq N \]

이다.

3.2 후보 표적 영역의 탐색

위 단계에서 검출된 후보 표적의 블록들 중에서 최종 표적을 찾기 위한 단계로서, 후보 표적의 경계 영역 검출 영상 및 후보 표적의 위치 검출 영상의 블록 영상들, \(I(x, y) \) 및 \(I(x, y) \)에 라벨링 처리를 수행한다. 후보 표적의 경계 영역의 라벨링과 후보 표적 위치의 라벨링이 중첩되면, 실제 표적일 가능성이 높다고 가정하였다. \(I(x, y) \)에서 \(m \)개의 라벨링된 블록 집합 \(L_b \)는

\[L_b = L_1, L_2, L_3, \ldots, L_m \]

니다. 동일한 방법으로 영상 \(I(x, y) \)에서 \(n \)개의 라벨링된 블록 집합 \(L \)는

\[L_i = L_1, L_2, L_3, \ldots, L_n \]

니다. 두 집합 \(L_b \) 및 \(L \)의 공통 블록의 라벨링, \(L \)는

\[L_b \cap L = \{ L_i \} \]

니다. 공통 블록의 라벨링들은 표적일 확률이 가장 높은 블록이 된다. 그림 5는 이러한 라벨링 처리에 의한 표적 블록을 추출한 영상을 나타낸다. 그림 3에서 처럼 만약 이 공통 블록의 라벨링 개수 \(N_b \)가 라벨링

그림 5. 표적 블록의 추출: (a) 집합 \(L_b \)를 적용한 블록 영상, (b) 집합 \(L_b \)를 적용한 블록 영상, (c) 집합 \(L_b \) 및 집합 \(L_b \)의 공통 블록 영상, 및 (d) 그림(c)의 내부를 제외 표적 추출 영상

문턱치 \(N_b = 4 \)보다 크면, 표적은 근거리 표적으로 간주되고, 제한적 작용적 구조 요소를 적용한 열림 연산자를 적용하고, 그렇지 않다면 원거리 표적으로 간주하여 그 부근 분산 가중치 정보 에트로피 방법만 적용한다. 그림 5(a)는 그림 4(b)의 블록 영상, \(I(x, y) \)에 대하여 집합 \(L_b \)를 적용한 블록 영상이고, 5(b)는 그림 4(d)의 블록 영상, \(I(x, y) \)에 대하여 집합 \(L_b \)을 적용한 블록 영상이다. 그림 5(c)는 집합 \(L_b \) 및 집합 \(L_b \)의 공통 블록 영상이고, 그림 5(d)는 그림 5(c)의 내부를 제외 표적 추출 영상이다. 그림 5(d)의 영상 좌표 \(x, y \)를 원 영상 좌표 \((i, j)\)로 한정한 영역이 표적 영역이 된다. 표적 영역이 검출되면, 그림 4(a)에서 얻어진 표적 경계 영역의 특성을 고려하여 작용적 구조 요소를 이용한 열림 연산자가 표적 영역에 적용된다.

3.3 작용적 구조요소를 이용한 열림 연산자

최근에 표적 검출에 응용하기 위하여 탑햇(top-hat) 필터가 연구되어갔다[4-6]. 하지만 이 방법은 원거리 표적에 대해서만 연구되었고, 근거리 표적에 대해서는 아직 연구되지 않았다. 특히 근거리 표적 모양 및 크기에 대해서는 연구되지 않았기 때문에 이러한 형태학적 연산자를 근거리 표적에 적용할 경우 표적 모양 추출이 어렵다. 형태학적 연산자는 열림 연산자(opening operator)의 구조 요소가 실제 표적 크기보다 큰 경우, 침식 (erosion) 연산 과정에서 실제 표적 모양을 변경시킨다. 반면에 열림 연산자의 구조 요소가 실제 표적 크기보다 작은 경우, 팽창 (dilation) 연산 과정에서 실제 표적의 경계 영역을 부정확하게 검출하는 단점을 야기시킨다. 따라서 표적에 적합한 구
조 요소를 선택하기 위해서는 표적의 경계 영역 특성
을 파악해야 한다. 그림 6은 가중치 정보 엔트로피 연
산을 이용한 그림 4(a)의 표적 경계 검출 영상을 확대
한 영상이다. 근거의 표적의 경우 표적 경계에서 가중
치 정보 엔트로피 값이 높기 때문에 가장 높은 가중치
정보 엔트로피 값을 가지는 화소 위치 \((x_m, y_m)\)을 이용
하여 표적의 경계 영역 특성을 파악하고, 표적 경계를
정확히 추출하는 구조 요소를 선택하고자 한다.

표적 내부 영역은 화소 값이 높은 평탄 영역이며,
표적 경계 영역은 배경 영역과 인접해 있기 때문에 화
소 값의 변화폭이 큰 복잡 영역이다. 이러한 특성에
근거하여 표적 경계 영역에서의 폭 정보를 구조 요소
선택에 이용할 수 있다. 이후 이 선택된 구조 요소를
이용한 열림 연산자를 적용하여 표적 모양을 정확히
추출할 수 있다. 이와 같은 작용적 구조 요소를 선택
하기 위한 틀로는 그림 7과 같다.

표적 경계 영역은 화소 값의 변화폭이 크기 때문에
표적 경계 영역에서 가장 높은 가중치 정보 엔트로피
값을 가지는 화소 위치 \((x_m, y_m)\)를 중심으로 하는

\[(2k+1) \times (2k+1)\] 크기의 국부 창 \(W\)를 사용한다. 여기서
\(k\)의 초기값은 1로 설정한다. 이 국부 창 \(W\)는 \((x_m, y_m)\)
을 중심으로 표적 경계 영역의 특성을 파악하는데 이
용된다. 먼저 국부 창 \(W\)의 가중치 정보 엔트로피 값
의 평균, \(w_{mk}\)을 계산한 후, 국부 창 \(W\)의 크기를 설
정하기 위한 평균값, \(Th_{se}\)는

\[Th_{se} = \gamma \times WIE_{(x_m, y_m)} \] (12)

와 같다. 여기서 \(WIE_{(x_m, y_m)}\)는 \((x_m, y_m)\)에서의 최대 가
중치 정보 엔트로피 값이며, \(\gamma\)는 \(WIE_{(x_m, y_m)}\)의 가중
치이며, 실험에 의해 얻어진 값으로 0.4로 정한다.

\(w_{mk}\)이 \(Th_{se}\)보다 크다면 표적의 경계 영역에서 가중
치 정보 엔트로피 값의 변화폭이 크기 때문에 국부 창
\(W\)의 크기를 계속 증가시킨 후, 국부 창 \(W\)의\(w_{mk}\)이
식 (12)의 경계치보다 작다면 그 때의 국부 창 \(W\)의
크기 \(k\)를 표적 영역에 적용할 열림 연산자의 구조 요
소로 선택한다.

Ⅳ. 실험 및 고찰

제안한 근거리 표적 추출 방법에 대한 성능을 컴퓨터
시뮬레이션으로 확인하였다. 그림 8은 8 bit
320×240 크기의 실험 영상들 (실험상상1(A), 실험영
상2(B) 및 실험상상3(C))이다. 제안한 방법의 성능을
평가하기 위하여 기존 알고리즘 중 Osu 방법 및 닥릿
필터를 사용하였다. 그림 9는 실험상상들에 대해 제안
한 방법 및 기존 방법들을 이용한 결과 영상들이다.
의 경우 검출 확률은 비교적 높으나 오경보수가 높음을 알 수 있다. 하지만 제안한 방법의 경우 높은 검출 확률에 비해 오경보수가 현저히 낮을 수 있다. 따라서 제안한 방법이 기존의 방법에 비해 표적 추출 성능이 뛰어나를 확인하였다.

표 1. 기존 방법 및 제안한 방법의 객관적 성능 비교

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_a</td>
<td>F_a</td>
<td>P_r</td>
</tr>
<tr>
<td>2D Otsu</td>
<td>65.24</td>
<td>102</td>
<td>66.32</td>
</tr>
<tr>
<td>Top-hat</td>
<td>89.65</td>
<td>686</td>
<td>88.54</td>
</tr>
<tr>
<td>Proposed</td>
<td>93.21</td>
<td>51</td>
<td>92.52</td>
</tr>
</tbody>
</table>

V. 결론

본 논문에서는 근거리 표적 추출을 위해서 적응적 구조 요소를 이용한 열림 연산자를 제안하였다. 표적 위치 및 표적 경계 영역을 추출하기 위하여 먼저 국부 분산 가중치 정보 엔트로피의 연산을 수행한 후, 이 국부 분산 가중치 정보 엔트로피의 두 반복적 처리를 이용하여 표적 위치 및 표적 경계 영역에 대한 정보를 얻은 다. 이렇게 추정된 표적 위치 및 표적 영역에 대하여 표적 모양을 정확히 추출하기 위하여 표적 경계 영역
의 가중치 정보 엔트로피 분포를 조사한 후, 이를 고려한 적응적 구조 요소를 이용한 열림 연산자를 표적 영역에 적용하여 최종 표적을 추출한다. 제안한 방법의 성능을 평가하기 위하여 실제 표적이 포함된 적외선 영상에 대해 기존 방법과 비교하였다. 그 결과로서 제안한 방법이 기존의 방법에 비해 표적 추출 성능이 뛰어남을 확인하였다.

참고 문헌

권 혜 주 (Hyuk-Ju Kwon)
준학원 2010년 6월 정북대학교 전자공학과 졸업
2010년 3월~현재 정북대학교 전자공학과 석사과정
<관심분야> Audio 및 Video 공학, 딥러닝 공학

배 태욱 (Tae-Wuk Bae)
정회원 2004년 2월 정북대학교 전자공학과 졸업
2006년 2월 정북대학교 전자공학과 석사
2010년 8월~현재 정북대학교 전자전기공학부 박사
2010년 9월~현재 정북대학교 전자전기공학부 박사 후 연구원
<관심분야> 적외선 영상처리, 신호처리

김 병익 (Byoung-Ik Kim)
정회원 2004년 2월 동양대학교 전자공학과 졸업
2008년 2월 정북대학교 전자공학과 석사
2008년 3월~현재 정북대학교 전자공학과 박사과정
<관심분야> 신호처리, 영상처리, 영상통신

553
이 성학 (Sung-Hak Lee) 정회원
1997년 2월 경북대학교 전자공학과 졸업
1999년 2월 경북대학교 전자공학과 석사
1999년 2월-2004년 6월 LG전자 영상제품연구소 신임연구원
2008년 2월 경북대학교 전자공학과 박사
2008년 3월-2009년 2월 경북대학교 전자전기컴퓨터학부 BK 계약교수
2009년 3월 현재 경북대학교 전자전기컴퓨터학부 BK계약교수
< 관심분야 > Audio 및 Video 공학, DTV 신호처리, 센서원공학

김영춘 (Young-Choon Kim) 정회원
1991년 2월 경북대학교 전자공학과 졸업
1993년 2월 경북대학교 전자공학과 석사
1997년 2월 경북대학교 전자공학과 박사
1998년 2월 현재 영동대학교
정보통신사이버경찰학과 교수
< 관심분야 > 컴퓨터 구조, 데이터 통신, 프로그래밍

안상호 (Sang-Ho Ahn) 정회원
1986년 2월 경북대학교 전자공학과 졸업
1988년 2월 경북대학교 전자공학과 석사
1992년 2월 경북대학교 전자공학과 박사
1993년 3월 현재 인체대학교
전자지능로봇공학과 교수
< 관심분야 > 영상공학, 로봇공학, 데이터 통신

송규익 (Kyu-Ik Sohng) 정회원
1975년 2월 경북대학교 전자공학과 졸업
1977년 2월 경북대학교 전자공학과 석사
1990년 2월 TOHOKU UNIV. 전자공학과 박사
1995년 3월 현재 경북대학교
전자전기컴퓨터학부 교수
< 관심분야 > Audio 및 Video 공학, DTV 신호처리, 센서원공학