Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 49 Issue 6
- /
- Pages.1263-1274
- /
- 2012
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON OPIAL INEQUALITIES INVOLVING HIGHER ORDER DERIVATIVES
- Zhao, Chang-Jian (Department of Mathematics China Jiliang University) ;
- Cheung, Wing-Sum (Department of Mathematics The University of Hong Kong)
- Received : 2011.02.19
- Published : 2012.11.30
Abstract
In the present paper we establish some new Opial-type inequalities involving higher order partial derivatives. The results in special cases yield some of the recent results on Opial's inequality and provide new estimates on inequalities of this type.
File
References
- R. P. Agarwal, Sharp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J. 47 (1995), no. 4, 567-593. https://doi.org/10.2748/tmj/1178225462
- R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
- R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, 1995.
- R. P. Agarwal and P. Y. H. Pang, Sharp Opial-type inequalities in two variables, Appl. Anal. 56 (1995), no. 3-4, 227-242. https://doi.org/10.1080/00036819508840324
- R. P. Agarwal and E. Thandapani, On some new integro-differential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi 28 (1982), no. 1, 123-126.
- H. Alzer, An Opial-type inequality involving higher-order derivatives of two functions, Appl. Math. Lett. 10 (1997), no. 4, 123-128. https://doi.org/10.1016/S0893-9659(97)00071-2
- D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.
- P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475. https://doi.org/10.1090/S0002-9947-1962-0139706-1
- W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math. 38 (1989), no. 2-3, 236-244. https://doi.org/10.1007/BF01840008
- W. S. Cheung, Some new Opial-type inequalities, Mathematika 37 (1990), no. 1, 136-142. https://doi.org/10.1112/S0025579300012869
- W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl. 162 (1991), no. 2, 317-321. https://doi.org/10.1016/0022-247X(91)90152-P
- W. S. Cheung, Opial-type inequalities with m functions in n variables, Mathematika 39 (1992), no. 2, 319-326. https://doi.org/10.1112/S0025579300015047
- W. S. Cheung, D. D. Zhao, and J. E. Pecaric, Opial-type inequalities for Differential Operators, to appear in Nonlinear Anal.
- K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc. 22 (1969), 258-261.
- E. K. Godunova and V. I. Levin, An inequality of Maroni, Mat. Zametki 2 (1967), 221-224.
- L. K. Hua, On an inequality of Opial, Sci. Sinica 14 (1965), 789-790.
- B. Karpuz, B. Kaymakcalan, and U. M. Ozkan, Some multi-dimenstonal Opial-type inequalities on time scales, J. Math. Inequal. 4 (2010), no. 2, 207-216.
- J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167 (1992), no. 1, 98-100. https://doi.org/10.1016/0022-247X(92)90238-9
- D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
- Z. Opial, Sur une inegalite, Ann. Polon. Math. 8 (1960), 29-32. https://doi.org/10.4064/ap-8-1-29-32
- B. G. Pachpatte, On integral inequalities similar to Opial's inequality, Demonstratio Math. 22 (1989), no. 1, 21-27.
- B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl. 120 (1986), no. 2, 547-556. https://doi.org/10.1016/0022-247X(86)90176-9
- B. G. Pachpatte, On some new generalizations of Opial inequality, Demonstratio Math. 19 (1986), no. 2, 281-291.
- B. G. Pachpatte, A note on generalized Opial type inequalities, Tamkang J. Math. 24 (1993), no. 2, 229-235.
- J. E. Pecaric, An integral inequality, Analysis, geometry and groups: a Riemann legacy volume, 471-478, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1993.
- J. E. Pecaric and I. Brnetic, Note on generalization of Godunova-Levin-Opial inequality, Demonstratio Math. 30 (1997), no. 3, 545-549.
- J. E. Pecaric and I. Brnetic, Note on the generalization of the Godunova-Levin-Opial inequality in several independent variables, J. Math. Anal. Appl. 215 (1997), no. 1, 274-282. https://doi.org/10.1006/jmaa.1997.5529
- G. I. Rozanova, Integral inequalities with derivatives and with arbitrary convex functions, Moskov. Gos. Ped. Inst. Vcen. Zap. 460 (1972), 58-65.
- D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174-178. https://doi.org/10.2307/2315901
- G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math. 13 (1982), no. 2, 255-259.
- G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83. https://doi.org/10.3792/pja/1195522120
- C. J. Zhao and W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Ineq. Appl. 2008 (2008), Article ID 571417, 10 pages. https://doi.org/10.1155/2008/571417
Cited by
- Opial-Type Inequalities with Two Unknowns and Two Functions on Time Scales vol.44, pp.3, 2016, https://doi.org/10.1007/s10013-015-0169-4