DOI QR코드

DOI QR Code

A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING

  • Received : 2011.05.26
  • Published : 2012.11.30

Abstract

In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.

Keywords

electrical impedance tomography;alternative elliptic PDE;spectroscopic change;anomaly thickness

References

  1. H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imperfections, Appl. Anal. 83 (2004), no. 1, 63-76. https://doi.org/10.1080/00036810310001620090
  2. H. Ammari, O. Kwon, J. K. Seo, and E. J. Woo, T-Scan electrical impedance imaging system for anomaly detection, SIAM J. Appl. Math. 65 (2004), no. 1, 252-266. https://doi.org/10.1137/S003613990343375X
  3. H. Ammari and J. K. Seo, An accurate formula for the reconstruction of conductivity Inhomogeneity, Adv. in Appl. Math. 30 (2003), no. 4, 679-705. https://doi.org/10.1016/S0196-8858(02)00557-2
  4. E. Beretta, E. Francini, and M. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1277-1301. https://doi.org/10.1016/S0021-7824(03)00081-3
  5. M. Bruhl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems 16 (2000), no. 4, 1029-1042. https://doi.org/10.1088/0266-5611/16/4/310
  6. M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101. https://doi.org/10.1137/S0036144598333613
  7. S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues II. measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996), 2251-2269. https://doi.org/10.1088/0031-9155/41/11/002
  8. H. Griffiths, H. T. L. Leung, and R. J. Williams, Imaging the complex impedance of the thorax, Clin. Phys. Physiol. Meas. 13 A (1992), 77-81.
  9. S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics, Oxford, UK: Elsevier, 2008.
  10. J. Gu and L. Y. Yu, Influence of geometric factors on crack depth measurement using the potential drop technique, NDT Int. 23 (1990), 161-164. https://doi.org/10.1016/0308-9126(90)90114-4
  11. D. Holder, Electrical Impedance Tomography: Methods, History and Applications, Bristol, UK: IOP Publishing, 2005.
  12. H. Jain, D. Isaacson, P. M. Edic, and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary, IEEE Trans. Biomed. Eng. 44 (1997), 1051-1060. https://doi.org/10.1109/10.641332
  13. S. Kim, M. K. Choi, E. J. Lee, J. K. Seo, and E. J. Woo, Spectroscopic admittivity imaging of membrane structure, to appear.
  14. S. Kim, J. Lee, J. K. Seo, E. J. Woo, and H. Zribi, Multifrequency trans-admittance scanner: mathematical framework and feasibility, SIAM J. Appl. Math. 69 (2008), no. 1, 22-36. https://doi.org/10.1137/070683593
  15. S. Kim, J. K. Seo, and T. Ha, A nondestructive evaluation method for concrete voids: frequency differential electrical impedance scanning, SIAM J. Appl. Math. 69 (2009), no. 6, 1759-1771. https://doi.org/10.1137/08071925X
  16. H. Lee and W. K Park, Location search algorithm of thin conductivity inclusions via boundary measurements, Mathematical methods for imaging and inverse problems, 21729, ESAIM Proc., 26, EDP Sci., Les Ulis, 2009.
  17. T. I. Oh, J. Lee, J. K. Seo, S. W. Kim, and E. J. Woo, Feasibility of breast cancer lesion detection using multi-frequency trans-admittance scanner (TAS) with 10Hz to 500kHz bandwidth, Physiol. Meas. 28 (2007), 71-84. https://doi.org/10.1088/0967-3334/28/7/S06
  18. W. K. Park and D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level-set method, Inverse Problems 25 (2009), no. 8, 1-24.
  19. J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, Mathematical framework and anomaly estimation algorithm for breast cancer detection: electrical impedance technique using TS2000 configuration, IEEE Trans. Biomed. Eng. 51 (2004), no. 11, 1898-1906. https://doi.org/10.1109/TBME.2004.834261
  20. E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode mod- els for electric current computed tomography, SIAM J. Appl. Math. 52 (1992), no. 4, 1023-1040. https://doi.org/10.1137/0152060

Acknowledgement

Supported by : Korea Research Foundation