Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 49 Issue 6
- /
- Pages.1349-1357
- /
- 2012
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON FOURIER COEFFICIENTS OF SOME MEROMORPHIC MODULAR FORMS
- Honda, Yutaro (5-12-18-503 Nishitenma Kita-ku) ;
- Kaneko, Masanobu (Faculty of Mathematics Kyushu University)
- Received : 2011.07.07
- Published : 2012.11.30
Abstract
We prove a congruence modulo a prime of Fourier coefficients of several meromorphic modular forms of low weights. We prove the result by establishing a generalization of a theorem of Garthwaite.
File
References
- S. Garthwaite, Convolution congruences for the partition function, Proc. Amer. Math. Soc. 135 (2007), no. 1, 13-20.
- P. Guerzhoy, On the Honda-Kaneko congruences, preprint, 2011.
- M. Kaneko and M. Koike, On modular forms arising from a differential equation of hypergeometric type, Ramanujan J. 7 (2003), no. 1-3, 145-164. https://doi.org/10.1023/A:1026291027692
- M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, Computational perspectives on number theory (Chicago, IL, 1995), 97-126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.
- S. Mathur, S. Mukhi, and A. Sen, On the classification of rational conformal field theory, Phys. Lett. B 213 (1988), no. 3, 303-308. https://doi.org/10.1016/0370-2693(88)91765-0
Cited by
- Polar harmonic Maass forms and their applications vol.86, pp.2, 2016, https://doi.org/10.1007/s12188-016-0134-5