DOI QR코드

DOI QR Code

Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors

대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성

  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Seung Yeon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Kwang-Mo (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 김찬중 (한국원자력연구원 중성자과학연구부) ;
  • 박승연 (한국원자력연구원 중성자과학연구부) ;
  • 김광모 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 전병혁 (한국원자력연구원 중성자과학연구부)
  • Received : 2012.09.20
  • Accepted : 2012.10.09
  • Published : 2012.11.27

Abstract

Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. Strasik, J. R. Hull, J. A. Mittleider, J. F. Gonder, P. E. Johnson, K. E. McCrary and C. R. McIver, Supercond. Sci. Technol., 23, 034021 (2010). https://doi.org/10.1088/0953-2048/23/3/034021
  2. K. Nagashima, H. Seino, N. Sakai and M. Murakami, Phys. C, 469, 1244 (2009). https://doi.org/10.1016/j.physc.2009.05.245
  3. T. Oka, K. Yokoyama, Y. Itoh, Y. Yanagi, M. Yoshikawa, H. Ikuta, U. Mizutani, H. Okada and K. Noto, Phys. C, 392-396, 709 (2003). https://doi.org/10.1016/S0921-4534(03)01017-7
  4. K. Yokoyama, T. Oka, H. Okada and K. Noto, Phys. C, 392-396, 739 (2003). https://doi.org/10.1016/S0921-4534(03)00867-0
  5. M. Tomita and M. Murakami, Nature, 421, 517 (2003). https://doi.org/10.1038/nature01350
  6. Y. Tachi, N. Uemura, K. Sawa, Y. Iwasa, K. Nagashima, T. Otani, T. Miyamoto, M. Tomita and M. Murakami, Supercond. Sci. Technol., 13, 850 (2000). https://doi.org/10.1088/0953-2048/13/6/346
  7. W. Lo, D. A. Cardwell, C. D. Dewhurst and S. -L. Dung, J. Mater. Res., 11, 786 (1996). https://doi.org/10.1557/JMR.1996.0095
  8. Y. A. Jee, C. J. Kim, T. H. Sung and G. W. Hong, Supercond. Sci. Technol., 13, 195 (2000). https://doi.org/10.1088/0953-2048/13/2/314
  9. P. Schatzle, G. Krabbes, G. Stover, G. Fuchs and D. Schlafer, Supercond. Sci. Technol., 12, 69 (1999). https://doi.org/10.1088/0953-2048/12/2/003
  10. K. Iida, K. Nenkov, G. Fuchs, G. Krabbes, B. Holzapfel, B. Buchnner and L. Schultz, Phys. C, 470, 1153 (2002).
  11. M. Muralidhar, S. Nariki, M. Jirsa and M. Murakami, Phys. C, 378-381, 746 (2002). https://doi.org/10.1016/S0921-4534(02)01534-4
  12. C. J. Kim, H. W. Park, K. B. Kim and G. W. Hong, Supercond. Sci. Technol., 8, 652 (1995). https://doi.org/10.1088/0953-2048/8/8/009
  13. D. X. Chen and R. B. Goldfarb, J. Appl. Phys., 66, 2489 (1989). https://doi.org/10.1063/1.344261
  14. C. J. Kim, H. J. Kim, J. H. Joo and G. W. Hong, Phys. C, 354, 384 (2001). https://doi.org/10.1016/S0921-4534(01)00105-8
  15. S. I. Yoo, N. Sakai, H. Takaichi, T. Higuchi and M. Murakami, Appl. Phys. Lett., 65, 633 (1994). https://doi.org/10.1063/1.112254
  16. M. Daeumling, J. M. Seuntjens and D. C. Larbaestier, Nature (London), 346, 332 (1991).
  17. C. J. Kim, K. B. Kim, I. H. Kuk, G. W. Hong, Y. S. Lee and H. S. Park, Supercond. Sci. Technol., 10, 947 (1997). https://doi.org/10.1088/0953-2048/10/12/019