DOI QR코드

DOI QR Code

Optical and Structural Properties of Ammoniated GaOOH and ZnO Mixed Powders

암모니아 분위기에서 열처리된 GaOOH와 ZnO 혼합분말의 구조적·광학적 성질

  • Song, Changho (Midas System Co. Ltd.) ;
  • Shin, Dongwhee (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University) ;
  • Byun, Changsob (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University) ;
  • Kim, Seontai (Department of Materials Engineering, Research Center for Infotronic Materials and Devices Hanbat National University)
  • 송창호 (마이다스시스템(주)) ;
  • 신동휘 (한밭대학교 신소재공학과, 정보전자부품소재연구소) ;
  • 변창섭 (한밭대학교 신소재공학과, 정보전자부품소재연구소) ;
  • 김선태 (한밭대학교 신소재공학과, 정보전자부품소재연구소)
  • Received : 2012.08.02
  • Accepted : 2012.10.11
  • Published : 2012.11.27

Abstract

The purpose of this study is to investigate the crystalline structure and optical properties of (GaZn)(NO) powders prepared by solid-state reaction between GaOOH and ZnO mixture under $NH_3$ gas flow. While ammoniation of the GaOOH and ZnO mixture successfully produces the single phase of (GaZn)(NO) solid solution within a GaOOH rich composition of under 50 mol% of ZnO content, this process also produces a powder with coexisting (GaZn)(NO) and ZnO in a ZnO rich composition over 50 mol%. The GaOOH in the starting material was phase-transformed to ${\alpha}$-, ${\beta}-Ga_2O_3$ in the $NH_3$ environment; it was then reacted with ZnO to produce $ZnGa_2O_4$. Finally, the exchange reaction between nitrogen and oxygen atoms at the $ZnGa_2O_4$ powder surface forms a (GaZn)(NO) solid solution. Photoluminescence spectra from the (GaZn)(NO) solid solution consisted of oxygen-related red-emission bands and yellow-, green- and blue-emission bands from the Zn acceptor energy levels in the energy bandgap of the (GaZn)(NO) solid solutions.

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode, p. 1, Springer, New York, USA (1997).
  2. D. Ehrentraut, E. Meissner and M. Bockowski, Technology of Gallium Nitride Crystal Growth, p. 245-254, Springer, New York, USA (2010).
  3. C. M. Balkas and R. F. Davis, J. Am. Ceram. Soc., 79, 2309 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
  4. S. Cho, J. Lee, I. Y. Park and S. Kim, Mater. Sci. Eng. B, 95, 275 (2002). https://doi.org/10.1016/S0921-5107(02)00264-7
  5. J. Lee and S. Kim, Kor. J. Mater. Res., 15, 348 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.5.348
  6. S. Shimada, H. Otani, A. Miura, T. Sekiguchi and M Yokoyama, J. Cryst. Growth, 452, 312 (2010).
  7. Y. Watanabe and S. Uekusa, Vacuum, 84, 514 (2010).
  8. K. Maeda, K. Teramura and K. Domen, J. Catal., 254, 198 (2008). https://doi.org/10.1016/j.jcat.2007.12.009
  9. H. Chen, W. Wen, Q. Wang, J. C. Hanson, J. T. Muckerman, E. Fujita, A. I. Frenkel and J. A. Rodriguez, J. Phys. Chem. C, 113, 3650 (2009). https://doi.org/10.1021/jp804551p
  10. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p. 335-336, Addison-Wesley, Ontario, Canada (1978).
  11. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem., B, 109, 20504 (2005). https://doi.org/10.1021/jp053499y
  12. G. Jacob, M. Boulou and M. Furtado, J. Cryst. Growth, 42, 136 (1977). https://doi.org/10.1016/0022-0248(77)90186-5
  13. K. Fujii, G. Fujimoto, T. Goto, T. Yao, N. Hoshino, Y. Kagamitani, D. Ehrentraut and T. Fukuda, Phys. Status Solidi A, 204, 3509 (2007). https://doi.org/10.1002/pssa.200723188