DOI QR코드

DOI QR Code

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials

어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향

  • Jeong, Eun-Wook (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Kim, Hoi-Bong (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Kim, Dong-Yong (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Kim, Min-Jung (Korea Clad Tech. Co., Ltd.) ;
  • Cho, Young-Rae (Dept. of Materials Science and Engineering, Pusan National University)
  • Received : 2012.09.16
  • Accepted : 2012.10.15
  • Published : 2012.11.27

Abstract

For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

Acknowledgement

Supported by : 부산대학교

References

  1. D. H. Bae, S. J. Jung, Y. R. Cho, W. S. Jung, H. S. Jung, C. Y. Kang and D. S. Bae, J. Kor. Inst. Met. & Mater., 47, 573 (2009).
  2. S. H. Choi, K. H. Kim, K. H. Oh and D. N. Lee, Mater. Sci. Eng., 222, 158 (1997). https://doi.org/10.1016/S0921-5093(96)10514-1
  3. S. H. Chung, J. M. Doh and J. Y. Byun, J. Kor. Inst. Met. & Meter., 42, 197 (2004) (in Korean).
  4. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Haszler and A. Vieregge, Mater. Sci. Eng., 280, 37 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X
  5. H. D. Manesh and A. K. Taheri, Mater. Des., 24, 617 (2003). https://doi.org/10.1016/S0261-3069(03)00135-3
  6. J. Y. Song, I. K. Kim, Y. S. Lee and S. I. Hong, Kor. J. Met. Mater., 49, 910 (2011).
  7. D. H. Bae, Y. J. Choi, W. S. Chung, D. S. Bae and Y. R. Cho, J. Kor. Inst. Met. & Mater., 47, 811 (2009) (in Korean).
  8. Y. M. Kim, S. K. Hong, S. W. Choi, Y. C. Kim and C. S. Kang, Kor. J. Mater. Res., 22, 169 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.4.169
  9. S. W. Han, B. I. Kim, H. W. Lee, W. Y. Chon and J. S. Gook, Kor. J. Mater. Res., 14, 851 (2004) (in Korean). https://doi.org/10.3740/MRSK.2004.14.12.851
  10. Y. M. Hwang, H. H. Hsu and H. J. Lee, Int. J. Mech. Sci., 37, 297 (1995). https://doi.org/10.1016/0020-7403(95)93522-8
  11. K. Y. Rhee, W. Y. Han, H. J. Park and S. S. Kim, Mater. Sci. Eng., 384, 70 (2004). https://doi.org/10.1016/j.msea.2004.05.051
  12. H. D. Manesh and A. K. Taheri, J. Alloys Compd., 361, 138 (2003). https://doi.org/10.1016/S0925-8388(03)00392-X
  13. T. Maitra and S. P. Gupta, Mater. Charact., 49, 293 (2003).
  14. L. Tricarico, R. Spina, D. Sorgente and M. Brandizzi, Mater. Des., 30, 2693 (2009). https://doi.org/10.1016/j.matdes.2008.10.010
  15. D. Naoi and M. Kajihara. Mater. Sci. Eng., 459, 375 (2007). https://doi.org/10.1016/j.msea.2007.01.099
  16. J. Laigo, F. Christien, R. Le Gall, F. Tancret and J. Furtado, Mater. Charact., 59, 1580 (2008). https://doi.org/10.1016/j.matchar.2008.02.001
  17. Z. Samardzija, P. McGuiness, M. Soderznik, S. Kobe and M. Sagawa, Mater. Charact., 67, 27 (2012). https://doi.org/10.1016/j.matchar.2012.02.017
  18. E. Pochec, S. Jozwiak, K. Karczewski and Z. Bojar, J. Alloys Compd., 509, 1124 (2011). https://doi.org/10.1016/j.jallcom.2010.08.074
  19. M. Yousaf, J. Iqbal and M, Ajmal, Mater. Charact., 62, 517 (2011). https://doi.org/10.1016/j.matchar.2011.03.004
  20. H. Peng, X. Su, Z. Li, J. Wang, C. Wu, H. Tu and X. Lai, Surf. Coat. Technol., 206, 4329 (2012). https://doi.org/10.1016/j.surfcoat.2012.01.048