Evaluation of Magnesia Cement Using MgCO3 and Serpentine

MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가

  • Lee, Jong-Kyu (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Soh, Jung-Sub (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong-Sik (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Song, Hun (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Park, Ji-Sun (Building Research Department, Korea Institute of Construction Technology)
  • 이종규 (한국세라믹기술원 에너지환경소재본부) ;
  • 소정섭 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 송훈 (한국세라믹기술원 에너지환경소재본부) ;
  • 박지선 (한국건설기술연구원 공공건축연구본부)
  • Received : 2012.10.11
  • Accepted : 2012.10.17
  • Published : 2012.11.27


MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.


Supported by : 국토해양부


  1. M. Schneider, M. Romer, M. Tschudin and H. Bolio, Cem. Concr. Res., 41(7), 642 (2011).
  2. J. Harder, Zement-Kalk-Gips, 59(2), 58 (2006).
  3. A. Santra and R. Sweatman, Energy Procedia, 4, 5243 (2011).
  4. B. Kolani, L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, L. Boutillon and L. Linger, Cement Concr. Compos., 34,(9), 1009 (2012).
  5. B Uzal and L Turanli, Cem. Concr. Res., 33(11), 1777(2003).
  6. L. Turanli, B. Uzal and F. Bektas, Cem. Concr. Res., 34(12), 2277 (2004).
  7. J. Temuujin, A. van Riessen and K. J. D. MacKenzie, Construct. Build. Mater., 24(10) 1906 (2010).
  8. T. Tho-in, V. Sata, P. Chindaprasirt and C. Jaturapitakkul, Construct. Build. Mater., 30, 366 (2012).
  9. D. L. Y. Kong and J. G. Sanjayan, Cem. Concr. Res., 40(2), 334 (2010).
  10. E. N. Kani, A. Allahverdi and J. L. Provis, Cement Concr. Compos., 34(1), 25 (2012).
  11. E. M. Gartner and D. E. Macpee, Cem. Concr. Res., 41, 736 (2011).
  12. L. J. Vandeperre, M. Liska and A. Al-Tabbaa, Cement Concr. Compos., 30(8), 706 (2008).
  13. M. Liska and A. Al-Tabbaa, Construct. Build. Mater., 22(8), 1789 (2008).
  14. E. Soudee and J. Pera, Cem. Concr. Res., 32(1), 153 (2002).
  15. Q. Yang, B. Zhu, S. Zhang and X. Wu, Cem. Concr. Res., 30(11), 1807 (2000).
  16. P. Frantzis and R. Baggott, Cem. Concr. Res., 27(8), 1155 (1997).