DOI QR코드

DOI QR Code

Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane

무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 특성 평가

  • Lee, Jong-Kyu (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Soh, Jung-Sub (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Noh, Hyun-Kyung (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.)
  • 이종규 (한국세라믹기술원 에너지환경소재본부) ;
  • 소정섭 (한국세라믹기술원 에너지환경소재본부) ;
  • 노현경 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2012.10.14
  • Accepted : 2012.10.24
  • Published : 2012.11.27

Abstract

Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the $CaCO_3$ addition. The apparent density and thermal conductivity were increased by increasing the $CaCO_3$ addition. With an increasing amount of $CaCO_3$ powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of $CaCO_3$, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over $45{\mu}m$ in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of $CaCO_3$ with average particle size of $27{\mu}m$ led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, $Mg(OH)_2$ showed the highest thermal conductivity; on the other hand, $CaCO_3$ showed the lowest thermal conductivity.

References

  1. L. Georges, C. Massart, G. Van Moeseke and A. De Herde, Energ. Pol., 40(1), 452 (2012). https://doi.org/10.1016/j.enpol.2011.10.037
  2. J. Mlakar and J. Strancar, Energ. Build., 43(6), 1443 (2011). https://doi.org/10.1016/j.enbuild.2011.02.008
  3. V. Badescu and M. D. Staicovici, Energ. Build., 38(2), 129 (2006). https://doi.org/10.1016/j.enbuild.2005.04.001
  4. J. -S. Kwon, C. H. Jang, H. Jung and T. -H. Song, Int. J. Heat Mass Tran., 52, 5525 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.029
  5. M. Jerman and R. erny, Energ. Build., 53(10), 39 (2012). https://doi.org/10.1016/j.enbuild.2012.07.002
  6. M. Alam, H. Singh and M. C. Limbachiya, Appl. Energ., 88(11), 3592 (2011). https://doi.org/10.1016/j.apenergy.2011.04.040
  7. A. M. Papadopoulos, Energ. Build., 37(1), 77 (2005). https://doi.org/10.1016/j.enbuild.2004.05.006
  8. A. A. Stec and T. R. Hull, Energ. Build., 43(2-3), 498 (2011). https://doi.org/10.1016/j.enbuild.2010.10.015
  9. H. -H. Liang and M. -C. Ho, Construct. Build. Mater., 21(6), 1254 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.051
  10. J. R. Correia, F. A. Branco and J. G. Ferreira, Compos. Appl. Sci. Manuf., 41(3), 441 (2010). https://doi.org/10.1016/j.compositesa.2009.12.002
  11. S. Panyakaew and S. Fotios, Energ. Build., 43(7), 1732 (2011). https://doi.org/10.1016/j.enbuild.2011.03.015
  12. F. Laoutid, L. Bonnaud, M. Alexandre, J. -M. Lopez- Cuesta and Ph. Dubois, Mater. Sci. Eng. R Rep., 63(3), 100 (2009). https://doi.org/10.1016/j.mser.2008.09.002
  13. R. Baetens, B. P. Jelle and A. Gustavsen, Energ. Build., 43(4), 761 (2011). https://doi.org/10.1016/j.enbuild.2010.12.012
  14. V. Vaou and D. Panias, Miner. Eng., 23(11), 1146 (2010). https://doi.org/10.1016/j.mineng.2010.07.015