Power Densities According to Anode Functional Layers on the Manufactured SOFC Unit Cells Using Decalcomania Method

전사지를 이용 적층한 셀 구조 및 연료극 기능층 형성에 따른 출력 특성

  • An, Yong-Tae (Koera Institute of Ceramics Engineering & Technology) ;
  • Ji, Mi-Jung (Koera Institute of Ceramics Engineering & Technology) ;
  • Gu, Ja-Bin (Koera Institute of Ceramics Engineering & Technology) ;
  • Choi, Jin-Hoon (Koera Institute of Ceramics Engineering & Technology) ;
  • Hwang, Hae-Jin (Department of Ceramic Engineering, Inha University) ;
  • Choi, Byung-Hyun (Koera Institute of Ceramics Engineering & Technology)
  • 안용태 (한국세라믹기술원 전자소재팀) ;
  • 지미정 (한국세라믹기술원 전자소재팀) ;
  • 구자빈 (한국세라믹기술원 전자소재팀) ;
  • 최진훈 (한국세라믹기술원 전자소재팀) ;
  • 황해진 (인하대학교 세라믹공학과) ;
  • 최병현 (한국세라믹기술원 전자소재팀)
  • Received : 2012.10.29
  • Accepted : 2012.11.06
  • Published : 2012.11.27


The properties of SOFC unit cells manufactured using the decalcomania method were investigated. SOFC unit cell manufacturing using the decalcomania method is a very simple process. In order to minimize the ohmic loss of flattened tube type anode supports of solid oxide fuel cells(SOFC), the cells were fabricated by producing an anode function layer, YSZ electrolyte, LSM electrode, etc., on the supports and laminating them. The influence of these materials on the power output characteristics was studied when laminating the components and laminating the anode function layer between the anode and the electrolyte to improve the output characteristics. Regarding the performance of the SOFC unit cell, the output was 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of not laminating the anode function layer; however, this value was improved by a factor of two to 574 $mW/cm^2$ due to the decrease of the ohmic resistance and polarization resistance of the cell in the case of laminating the anode function layer. The outputs appeared to be as high as 574 and 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of using decalcomania paper when laminating the electrolyte layer using the in dip-coating method; however, the reason for this is that interfacial adhesion was improved due to the dense structure, which leads to a thin thickness of the electrolyte layer.


Supported by : KETEP, Ministry of Knowledge Economy


  1. S. T. Park, B. H. Choi, M. J. Ji, Y. T. An and H. J. Choi., J. Kor. Ceram. Soc., 48, 246 (2011) (in Korean).
  2. S. C. Singhal, Solid State Ionics, 152, 405 (2002).
  3. G. A. Tompsett, C. Finnerty, K. Kendall, T. Alston and N. M. Sammes, J. Power Sources, 86, 376 (2000).
  4. T. Fukui, K. Murata, S. Ohara, H. Abe, M. Naito and K. Nogi, J. Power Sources, 125, 17 (2004).
  5. Y. K. Lee and Y. K. Lee, Kor. J. Mater. Res, 22(9), 470 (2012) (in Korean).
  6. S. D. Kim, S. H. Hyun, J. Moon, J. H. Kim and R. H. Song, J. Power Sources, 139, 67 (2005).
  7. T. L. Reitz and H. Xiao, J. Power Sources, 161, 437 (2006).
  8. P. V. Dollen and S. Barnett, J. Am. Ceram. Soc., 88, 3361 (2005).
  9. K. Chen, X. Chen, Z. Lu, N. Ai, X. Huang and W. Su, Electrochim. Acta, 53, 7825 (2008).
  10. M. J. Lee, B. N. Kim, T. Y. Lim, S. K. Kim and B. H. Choi, J. Kor. Ceram. Soc., 48, 520 (2011) (in Korean).
  11. N. Ai, Z. Lu, K. Chen, X. Huang, B. Wei, Y. Zhang, S. Li, X. Xin, X. Sha and W. Su, J. Power Sources, 159, 637 (2006).
  12. N. U. Cho, S. C. Hwang and I. S. Lee, J. Kor. Ceram. Soc., 44, 720 (2007) (in Korean).
  13. J. V. Herle, R. Ihringer, R. V. Cavieres, L. Constantin and O. Bucheli, J. Eur. Ceram. Soc., 21, 1855 (2001).

Cited by

  1. Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper vol.23, pp.3, 2013,