DOI QR코드

DOI QR Code

Preparation of Al-doped NiO via Solvothermal Synthesis and its Crystal Structural and Electrical Properties

용매열 합성법을 통하여 알루미늄을 도핑한 니켈옥사이드의 제조와 그 결정구조적, 전기적 특성

  • Hong, Sun-Ki (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team) ;
  • Ji, Mi-Jung (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team) ;
  • Lee, Min-Jin (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team) ;
  • Jung, Sung-Hun (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team) ;
  • Seol, Kwang-Hee (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team) ;
  • Choi, Byung-Hyun (Korea Institute of Ceramic Engineering & Technology, Electronic Materials Team)
  • 홍선기 (한국세라믹기술원, 전자소재팀) ;
  • 지미정 (한국세라믹기술원, 전자소재팀) ;
  • 이민진 (한국세라믹기술원, 전자소재팀) ;
  • 정성헌 (한국세라믹기술원, 전자소재팀) ;
  • 설광희 (한국세라믹기술원, 전자소재팀) ;
  • 최병현 (한국세라믹기술원, 전자소재팀)
  • Received : 2012.10.30
  • Accepted : 2012.11.08
  • Published : 2012.11.27

Abstract

Nickel oxide was doped with a wide range of concentrations (mol%) of Aluminum (Al) by solvothermal synthesis; single-phased nano powder of nickel oxide was generated after calcination at$900^{\circ}C$. When the concentration of Al dopant was increased, the reduced intensity was confirmed through XRD analysis. Lattice parameters of the synthesized NiO powder were decreased after treatment of the dopant; parameters were increased when the concentration of Al was over the doping limit (5 mol% Al). The binding energy of $Ni^{2+}$ was chemically shifted to $Ni^{3+}$ by doping $Al^{3+}$ ion, as confirmed by the XPS analysis. The tilted structure of the synthesized NiO with 5 mol% Al dopant and the polycrystalline structure of the $Ni_{0.75}Al_{0.25}O$ were observed by HR-TEM analysis. The electrical conductivity of the newly synthesized NiO was highly improved by Al doping in the conductivity test. The electrical conductivity values of the commercial NiO and the synthesized NiO with 5 mol% Al dopant ($Ni_{0.95}Al_{0.05}O$) were 1,400 s/cm and 2,230 s/cm at $750^{\circ}C$, respectively. However, the electrical conductivity of the synthesized NiO with 10 mol% Al dopant ($Ni_{0.9}Al_{0.1}O$) decreased due to the scattering of free-electrons caused by the large number of impurity atoms; the electrical conductivity of $Ni_{0.9}Al_{0.1}O$ was 545 s/cm at $750^{\circ}C$.

Acknowledgement

Supported by : 한국산업기술평가관리원, 한국에너지기술평가원

References

  1. W. Z. Zhu and S. C. Deevi, Mater. Sci. Eng., 362(1), 228 (2003). https://doi.org/10.1016/S0921-5093(03)00620-8
  2. S. T. Aruna, M. Muthuraman and K. C. Patil, Solid State Ionics, 111(1), 45 (1998). https://doi.org/10.1016/S0167-2738(98)00187-8
  3. J. L. B. Daniel, A. Alan, P. B. Nigel and J. S. Stephan, Chem. Soc. Rev., 37(8), 1568 (2008). https://doi.org/10.1039/b612060c
  4. J. M. Ralph, A. C. Schoeler and M. Krumpelt, J. Mater. Sci., 36(5), 1161 (2001). https://doi.org/10.1023/A:1004881825710
  5. T. Fukui, K. Murata, S. Ohara, H. Abe, M. Naito and K. Nogi, J. Power. Sources, 125(1), 17 (2004). https://doi.org/10.1016/S0378-7753(03)00817-6
  6. T. Ishihara, J. Yan, M. Shinagawa and H. Matsumoto, Electrochim. Acta., 52(4), 1645 (2006). https://doi.org/10.1016/j.electacta.2006.03.103
  7. K. S. Song, R. H. Song and Y. E. Ihm, Kor. J. Mater. Res., 12(9), 691 (2002) (in Korean). https://doi.org/10.3740/MRSK.2002.12.9.691
  8. C. J. Fu, S. H. Chan, X. M. Ge, Q. L. Liu and G. Pasciak, Int. J. Hydrogen Energy, 36(21), 13727 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.119
  9. R. J. Gorte and J. M. Vohs, J. Catal., 216(1), 477 (2003). https://doi.org/10.1016/S0021-9517(02)00121-5
  10. H. Kim, C. Lu, W. L. Worrell, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 149(3), A247 (2002). https://doi.org/10.1149/1.1445170
  11. J. Karczewski, B. Bochentyn, S. Molin, M. Gazda, P. Jasinski and B. Kusz, Solid State Ionics, 221, 11 (2012). https://doi.org/10.1016/j.ssi.2012.06.002
  12. C. K. Cho, B. H. Choi and K. T. Lee, J. Alloy. Comp., 541, 433 (2012). https://doi.org/10.1016/j.jallcom.2012.07.012
  13. K. Soman, International system of units: A Handbook on SI units for scientists and engineers, p. 51, A. K. Ghosh, PHI Learning Pvt. Ltd., New Delhi, India (2009).
  14. N. S. Ramgir, Y. K. Hwang, I. S. Mulla and J. S. Chang, Solid State Sci., 8, 359 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.02.008
  15. M. A. Ryan, M. W. Peterson, D. L. Williamson, J. S. Frey, G. E. Maciel and B. A. Parkinson, J. Mater. Res., 2(4), 528 (1987). https://doi.org/10.1557/JMR.1987.0528