Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana

OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가

  • Park, Phun Bum (Department of Bioscience and Biotechnology, University of Suwon)
  • 박훤범 (수원대학교 생명공학과)
  • Received : 2012.09.18
  • Accepted : 2012.11.09
  • Published : 2012.11.30


The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.


Supported by : 한국연구재단


  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell 9, 1859-1868.
  2. Adams, P., Thomas, J. C., Vernon, D. M., Bohnert, H. J. and Jensen, R. G. 1992.Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33, 1215-1223.
  3. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.
  4. Busk, P. K. and Pages, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425-435.
  5. Cao, X., Costa, L. M., Biderre-Petit, C., Kbhaya, B., Dey, N., Perez, P., McCarty, D. R., Gutierrez-Marcos, J. F. and Becraft, P. W. 2007.Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol. 143, 720-731.
  6. Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgern, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps,J. A., Harper, J. F., Heinlein, M., Kobayashi, K., Hohn, T., Dang, J. L., Wang, X. and Zhu, T. 2002. Expression profile matrix of Arabidopsistranscription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559-574.
  7. Chen, W. and Zhu, T. 2004. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 9, 591-596.
  8. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730.
  9. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735-743.
  10. Dickinson, C. D., Evans, R. P. and Nielsen, N. C. 1988. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res. 16, 371.
  11. Fujita, Y., Fujita, M., Satoh, R., Maruyama,K., Parvez, M. M., Seki, M., Hiratsu, K.,Ohme-Takagi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABAsignaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.
  12. Gilmour, S. J. and Thomashow, M. F. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 17, 1233-1240.
  13. Giraud, E., Ho, L. H. M., Clifton, R., Carroll,A., Estavillo, G., Tan, Y. F., Howell, K. A.,Ivanova, A., Pogson, B. J., Millar, A. H. and Whelan, J. 2008. The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147, 595-610.
  14. Giuliano, G., Pichersky, E., Malik, V. S., Timko, M. P., Scolnik, P. A. and Cashmore, A. R. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 85, 7089-7093.
  15. Guiltinan, M. J., Marcotte, W. R. and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271.
  16. Hossain, M. A., Lee, Y., Cho, J. I., Ahn, C. H., Lee, S. K., Jeon, J. S., Kang, H., Lee, C. H., An, G. and Park, P. B. 2010a. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol. Biol. 72, 557-566.
  17. Hossain, M. A., Cho, J. I., Han, M., Ahn, C. H., Jeon, J. S., An, G. and Park, P. B. 2010b. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J. Plant Physiol. 167, 1512-1520.
  18. Huang, X. S., Liu, J. H. and Chen, X. J. 2010. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol. 10, 230.
  19. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedermann, J., Kroj, T. and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111.
  20. Karakas, B., Ozias-Akins, P., Stushnoff, C., Suefferheld, M. and Rieger, M. 1997. Salinity and drought tolerance of mannitol- accumulating transgenic tobacco. Plant Cell Environ. 20, 609-616.
  21. Kim, J. B., Kang, J. Y. and Kim, S. Y. 2004. Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance. Plant Biotech. J. 2, 459-466.
  22. Kim, S. Y., Chung, H. J. and Thomas, T. L. 1997. Isolation of a novel class of bZIP transcription factorthat interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11, 1237-1251.
  23. Kim, S. Y. 2007. Recent advances in ABA signaling. J. Plant Biol. 50, 117-121.
  24. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199-222.
  25. Lu, G., Gao, C., Zhong, X. and Han, B. 2008. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605-615.
  26. Mantyla, E., Lang, V. and Palva, E. T. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107, 141-148.
  27. McCarty, D. R., Carson, C. B., Stinard, P. S. and Robertson, D. S. 1989. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1, 523-532.
  28. Ming, C., Zhaoshi, X., Lanqin, X., Liancheng, L., Xianguo, C., Jianhui, D., Qiaoyan, W. and Youzhi, M. 2009. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine maxL.). J. Exp. Bot. 60, 121-135.
  29. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19.
  30. Moller, I. M., Jensen, P. E. and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481.
  31. Navrot, N., Rouhier, N., Gelhaye, E. and Jacquot, J. P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant 129, 185-195.
  32. Neill, S. J., Horgan, R. and Rees, A. F. 1987. Seed development and vivirary in Zea mays L. Planta 171, 358-364.
  33. Nijhawan, A., Jain, M., Tyagi, A. K. and Khurana, J. P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333-350.
  34. Niu, X., Renshaw-Gegg, L., Miller, L. and Guiltinan, M. J. 1999. Bipartite determinants of DNA binding specificity of plant basic leucine zipper proteins. Plant Mol. Biol. 41, 1-13.
  35. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yshiwara, K., Seki, M., Shnozaki, K. and Yamaguchi-Shinozaki, K. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767.
  36. Robichaud, C. S., Wong, J. and Sussex, I. M. 1980. Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genet. 1, 325-330.
  37. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A.,Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, K., Yamaguchi-Shinozaki, K.,Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsisgenes under drought, cold and high-salinity stresses using a full length cDNA microarray. Plant J. 31 279-292.
  38. Shen, Q. and Ho, T. H. D. 1995. Functional dissection of an abscisic acid (ABA) inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307.
  39. Shen, Q., Zhang, P. and Ho, T. H. D. 1996. Modular nature of abscisic acid (ABA) response complexes: Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-1119.
  40. Singh, K. B. 1998. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol. 118, 1111-1120.
  41. Todaka, D., Nakashima, K., Shinozaki, K. and Yamakuchi- Shinozaki, K. 2012. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 6-9.
  42. Tran, L. S., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S. D., Maruyama, K., Fujita, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2006. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 49, 46-63.
  43. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632- 11637.
  44. Wise, A. A., Liu, Z. Y. and Binns, A. N. 2006. Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol. Biol. 343, 43-53.
  45. Xiang, Y., Tang, N., Du, H., Ye, H. and Xiong, L. 2008. Characterization of OsbZIP23 as a key player of basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938-1952.
  46. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic and coldstress- responsive promoters. Trends Plant Sci. 10, 88-94.
  47. Yancey, P. H., Clark, M. E., Hand, S. C.,Bowlus, R. D. and Somero, G. N. 1982. Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222.
  48. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. andYamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685.
  49. Zeevaart, J. A. and Creelman, R. A. 1988.Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473.