DOI QR코드

DOI QR Code

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

Jo, Wan-Kuen;Kang, Hyun-Jung

  • Received : 2012.08.24
  • Accepted : 2012.11.12
  • Published : 2012.11.30

Abstract

To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.

Keywords

Decomposition efficiency;Aromatic species;Input concentration;Relative humidity;Stream flow rate

References

  1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001, Visible-light photocatalysis in nitrogenimpregnated titanium oxides, Science, 293, 269-271. https://doi.org/10.1126/science.1061051
  2. Chen, D., Jiang, Z., Geng, J., Wang, Q., Yang, D., 2007, Carbon and nitrogen co-doped $TiO_{2}$ with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res., 46, 2741-2746. https://doi.org/10.1021/ie061491k
  3. Chen, X., Burda, C., 2008,The electronic origin of the visible-light absorption properties of C-, N- and S-doped $TiO_{2}$ nanomaterials, J. Am. Chem. Soc., 130, 5018-5019. https://doi.org/10.1021/ja711023z
  4. Chen, C. S., Hseu, Y. C., Liang, S. H., Kuo, J. -Y., Chen, S. C., 2008, Assessment of genotoxicity of methyltert- butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay, J. Hazard. Mater., 153, 351-356. https://doi.org/10.1016/j.jhazmat.2007.08.053
  5. Demeestere, K., Dewulf, J., Van Langenhove, H., 2007, Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art, Crit. Rev. Environ. Sci. Technol., 37, 489-538. https://doi.org/10.1080/10643380600966467
  6. De Witte, K., Meynen, V., Mertens, M., Lebedev, O.I., Van Tendeloo, G., Sepúlveda-Escribano, A., Rodríguez- Reinoso, F., Vansant, E. F., Cool, P., 2008, Multi-step loading of titania on mesoporous silica: influence of themorphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs, Appl. Catal. B, 84, 125-132. https://doi.org/10.1016/j.apcatb.2008.03.015
  7. Ding, H., Sun, H., Shan, Y., 2005, Preparation and characterization of mesoporous SBA-15 supported dye-sensitized $TiO_{2}$ photocatalyst, J. Photochem. Photobiol.A, 169, 101-107. https://doi.org/10.1016/j.jphotochem.2004.04.015
  8. Dolat, D., Quici, N., Kusiak-Nejman, E., Morawski, A. W., Li Puma, G., 2012, One-step hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,C-$TiO_{2}$) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation, Appl. Catal. B, 115-116, 81-89. https://doi.org/10.1016/j.apcatb.2011.12.007
  9. Dong, F., Wang, H., Wu, Z., 2009, One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity, J. Phys. Chem. C, 113, 16717-16723. https://doi.org/10.1021/jp9049654
  10. Fujishima, A., Zhang, X., Tryk, D.A., 2008, $TiO_{2}$photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515-582. https://doi.org/10.1016/j.surfrep.2008.10.001
  11. Horikawa, T., Katoh, M., Tomida, T., 2008, Preparation and characterization of nitrogen-doped mesoporoustitania with high specific surface area, Microporous Mesoporous Mater., 110, 397-404. https://doi.org/10.1016/j.micromeso.2007.06.048
  12. Jo, W. K., Kim, J. T., 2009, Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds, J. Hazard.Mater., 164, 360-366. https://doi.org/10.1016/j.jhazmat.2008.08.033
  13. Jo, W. K., Yang, S. H., Shin, S. H., Yang, S. B., 2011b. Utilization of fin-installed annular reactors coated with visible light- or ultraviolet-driven photocatalysts for removal of gas-phase monocyclic aromatic compounds, Environ. Eng. Sci., 28, 43-51. https://doi.org/10.1089/ees.2010.0181
  14. Keshmiri, M., Troczynski, T., Mohseni, M., 2006, Oxidation of gas phase trichloroethylene and toluene using composite sol-gel $TiO_{2}$ photocatalytic coatings, J. Hazard. Mater.,128, 130-137. https://doi.org/10.1016/j.jhazmat.2005.07.060
  15. Kontos, A. G., Katsanaki, A., Likodimos, V., Maggos, T., Kim, D., Vasilakos, C., Dionysiou, D. D., Schmuki, P., Falaras, P., 2012, Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films, Chem. Eng. J., 179, 151-157. https://doi.org/10.1016/j.cej.2011.10.072
  16. Li, H., Wang, D., Fan, H., Wang, P., Jiang, T., Xie, T., 2011, Synthesis of highly efficient C-doped $TiO_{2}$photocatalyst and its photo-generated charge-transfer properties, J. Coll. Inter. Sci., 354, 175-180. https://doi.org/10.1016/j.jcis.2010.10.048
  17. Lindgren, T., Mwabora, J. M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C. -G., Lindquist, S. -E., 2003, Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B, 107, 5709-5716. https://doi.org/10.1021/jp027345j
  18. Nam, S. H., Kim, T. K., Boo, J. H., 2012, Physical property and photo-catalytic activity of sulfur doped $TiO_{2}$ catalysts responding to visible light, Catal. Today, 185, 259-262. https://doi.org/10.1016/j.cattod.2011.07.033
  19. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004, Preparation of S-enhanced $TiO_{2}$ photocatalysts and their photocatalytic activities under visible light, Appl. Catal.A, 265, 115-121. https://doi.org/10.1016/j.apcata.2004.01.007
  20. Ohura, T., Amagai, T., Shen, X., Li, S., Zhang, P., Zhu, L., 2009, Comparative study on indoor air quality in Japan and China: characteristics of residential indoor and outdoor VOCs, Atmos. Environ., 43, 6352-6359. https://doi.org/10.1016/j.atmosenv.2009.09.022
  21. Pengyi, Z., Fuyan, L., Gang, Y., Qing, C., Wanpeng, Z., 2003, A comparative study on decomposition of gaseous toluene by $O_{3}$/UV, $TiO_{2}$/UV and $O_{3}$/$TiO_{2}$/ UV, J. Photochem. Photobiol. A, 156, 189-194. https://doi.org/10.1016/S1010-6030(02)00432-X
  22. Rauf, M. A., Meetani, M. A., Hisaindee, S., 2011, An overview on the photocatalytic degradation of azo dyes in the presence of $TiO_{2}$ doped with selective transition metals, Desalination, 276, 13-27. https://doi.org/10.1016/j.desal.2011.03.071
  23. Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J. -M., 2009, Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization, Appl. Catal. B, 86, 159-165. https://doi.org/10.1016/j.apcatb.2008.08.003
  24. Valentin, D., Pacchioni, C., Selloni, A., 2005, Theory of carbon doping of titanium dioxide, Chem. Matter., 17, 6656-6665. https://doi.org/10.1021/cm051921h
  25. Wang. X., Lim, T. -T., 2010, Solvothermal synthesis of C-N codoped $TiO_{2}$ and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal. B, 100, 355-364. https://doi.org/10.1016/j.apcatb.2010.08.012
  26. Xie, Y., Li, Y., Zhao, X., 2007, Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped $TiO_{2}$, J. Mol. Catal.A, 277, 119-126 https://doi.org/10.1016/j.molcata.2007.07.031
  27. Yang, X., Cao, C., Erickson, L., Hohn, K., Maghirang, R., Klabunde, K., 2008, Synthesis of visible-lightactive $TiO_{2}$-based photocatalysts by carbon and nitrogen doping, J. Catal., 260, 128-133. https://doi.org/10.1016/j.jcat.2008.09.016
  28. Yin, S., Aita, Y., Komatsu, M., Wang, J., Tang, Q., Sato, T., 2005, Synthesis of excellent visible-light responsive $TiO_{2-x}N_{y}$ photocatalyst by a homogeneous precipitationsolvothermal process, J. Mater. Chem., 15, 674-682. https://doi.org/10.1039/b413377c
  29. Yin, S., Komatsu, M., Zhang, Q., Saito, F., Sato, T., 2007, Synthesis of visible-light responsive nitrogen/ carbondopedtitaniaphotocatalyst by mechanochemical doping, J. Mater. Sci., 42, 2399-2404. https://doi.org/10.1007/s10853-006-1231-0
  30. Yu, C., Yu, J., 2009, A simple way to prepare C-N-codoped $TiO_{2}$ photocatalyst with visible-light Activity, Catal. Lett., 129, 462-470. https://doi.org/10.1007/s10562-008-9824-7
  31. Zhang, S., Song, L., 2009, Preparation of visiblelight- active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline, Catal. Comm., 10, 1725-1729. https://doi.org/10.1016/j.catcom.2009.05.017
  32. Zhu, J., Deng, Z., Chen, F., Zhang, J., Chen, H., Anpo, M., Huang, J., Zhang, L., 2006, Hydrothermal doping method for preparation of $Cr^{3+}-TiO_{2}$ photocatalysts with concentration gradient distribution of $Cr^{3+}$, Appl. Catal. B, 62, 329-335. https://doi.org/10.1016/j.apcatb.2005.08.013
  33. Znad, H., Kawase, Y., 2009, Synthesis and characterization of S-doped Degussa P25 $TiO_{2}$ with application in decolorization of Orange II dye as a model substrate, J. Mole. Catal. A, 314, 55-62. https://doi.org/10.1016/j.molcata.2009.08.017

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)