DOI QR코드

DOI QR Code

ZERO-DIVISOR GRAPHS OF MULTIPLICATION MODULES

Lee, Sang Cheol;Varmazyar, Rezvan

  • Received : 2012.10.19
  • Accepted : 2012.11.18
  • Published : 2012.12.25

Abstract

In this study, we investigate the concept of zero-divisor graphs of multiplication modules over commutative rings as a natural generalization of zero-divisor graphs of commutative rings. In particular, we study the zero-divisor graphs of the module $\mathbb{Z}_n$ over the ring $\mathbb{Z}$ of integers, where $n$ is a positive integer greater than 1.

Keywords

Zero-divisor;Multiplication module

References

  1. R. Ameri, On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Sciences 27(2003), 1715-1724.
  2. D. F. Anderson and P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, J. Algebra 217(1999), 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), 847-855. https://doi.org/10.1016/S0021-8693(03)00435-6
  4. S. Akbari, H. R. Maimani, and S. Yassemi, Zer-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003) 169-180. https://doi.org/10.1016/S0021-8693(03)00370-3
  5. Michael Axtell, Joe Stickers, and Wallace Trampbach, Zero-divisor ideals and realizable zero-divisor graphs, Involve a journal of mathematics 2(1)(2009), 17- 27. https://doi.org/10.2140/involve.2009.2.17
  6. A. Barnard, Multiplication Modules, J. Algebra 71(1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  7. I. Beck, Coloring of Commutative Rings, J. Algebra 116(1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  8. Z. A. El-Bast and P. F. Smith, Multiplication Modules, Comm. in Algebra 16 (1988), 755-779. https://doi.org/10.1080/00927878808823601
  9. Irving Kaplansky, Commutative Rings, The University of Chicago Press, 1974.
  10. Sandra Spiroff and Cameron Wickham, A Zero-Divisor Graph Determined by Equivalence Classes of Zero Divisors, Comm. in Algebra 39(7) (2011), 2338- 2348. https://doi.org/10.1080/00927872.2010.488675