DOI QR코드

DOI QR Code

POSITIVE SOLUTIONS FOR A CLASS OF TELEGRAPH SYSTEM WITH MULTIPARAMETERS

  • Wang, Fanglei ;
  • An, Yukun
  • Received : 2010.09.25
  • Published : 2012.01.01

Abstract

In this paper, we study the existence, non-existence, and multiplicity of positive solutions for a coupled telegraph system using the xed-point theorem of cone expansion/compression type, the upper-lowe solutions method, and xed point index theory.

Keywords

telegraph system;doubly periodic solution;upper and lower solutions;fixed point theorem;cone

References

  1. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), no. 5, 559-568. https://doi.org/10.1016/S0362-546X(98)00221-1
  2. D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal. 42 (2000), no. 5, 803-811. https://doi.org/10.1016/S0362-546X(99)00125-X
  3. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
  4. D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal. 52 (2003), no. 2, 595-603. https://doi.org/10.1016/S0362-546X(02)00125-6
  5. W. S. Kim, Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations, J. Math. Anal. Appl. 197 (1996), no. 3, 735-748. https://doi.org/10.1006/jmaa.1996.0049
  6. Y. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus, J. Differential Equations 174 (2001), no. 2, 420-441. https://doi.org/10.1006/jdeq.2000.3915
  7. Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear Anal. 55 (2003), no. 3, 245-254. https://doi.org/10.1016/S0362-546X(03)00227-X
  8. Y. Li, Maximum principles and method of upper and lower solutions for time-periodic problems of the telegraph equations, J. Math. Anal. Appl. 327 (2007), no. 2, 997-1009. https://doi.org/10.1016/j.jmaa.2006.04.066
  9. J. M. do O, S. Lorca, J. Sanchez, and P. Ubilla, Positive solutions for a class of multiparameter ordinary elliptic systems, J. Math. Anal. Appl. 332 (2007), no. 2, 1249-1266. https://doi.org/10.1016/j.jmaa.2006.10.063
  10. J. M. do O, S. Lorca, and P. Ubilla, Local superlinearity for elliptic systems involving parameters, J. Differential Equations 211 (2005), no. 1, 1-19. https://doi.org/10.1016/j.jde.2004.04.013
  11. J. Mawhin, R. Ortega, and A. M. Robles-Perez, A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl. 251 (2000), no. 2, 695-709. https://doi.org/10.1006/jmaa.2000.7038
  12. J. Mawhin, R. Ortega, and A. M. Robles-Perez, Maximum principles for bounded solutions of the telegraph equation in space dimensions two or three and applications, J. Differential Equations 208 (2005), no. 1, 42{63. https://doi.org/10.1016/j.jde.2003.11.003
  13. R. Ortega and A. M. Robles-Perez, A maximum principle for periodic solutions of the telegraph equations, J. Math. Anal. Appl. 221 (1998), no. 2, 625-651. https://doi.org/10.1006/jmaa.1998.5921
  14. F. Wang and Y. An, Nonnegative doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl. 338 (2008), no. 1, 91-100. https://doi.org/10.1016/j.jmaa.2007.05.008
  15. F. Wang and Y. An, Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl. 349 (2009), no. 1, 30-42. https://doi.org/10.1016/j.jmaa.2008.08.003
  16. X. Yang, Existence of positive solutions for 2m-order nonlinear differential systems, Nonlinear Anal. 61 (2005), no. 1-2, 77-95. https://doi.org/10.1016/j.na.2004.11.013